William Wang Laboratory for Soft Matter Research

Responsive, Adaptive, and Dynamic Materials Group

double-arrowAbout

@radmaterials

Google Scholar

double-arrowResearch

Background:

Liquid crystals (LCs) are widely known for their use in liquid crystal displays (LCDs). Indeed, LCDs represent one of the most successful technologies developed to date using a responsive soft material: An electric field is used to induce a change in the ordering of the LC and thus a change in the optical appearance. Over the past decade, however, research has revealed the fundamental underpinnings of a potentially far broader and more pervasive uses of LCs for the design of responsive soft material systems. These systems involve a delicate interplay between the effects of surface-induced ordering, the elastic strain of LCs, and the formation of topological defects and are characterized by a chemically complex and diverse range of nano- and micrometer-scale geometry that goes well beyond previous investigations. As a representative class of structural fluids, LCs combine properties commonly associated with crystalline solids (i.e., long-range orientational ordering of constituent molecules) and isotropic liquids (i.e., high mobility of constituent molecules). Thermotropic LCs can adopt a rich palette of positional order (i.e., the extent to which the molecules show translational symmetry, such as an ordered or lattice structure) and orientational order (i.e., the measure of the tendency of the molecules to align along the same direction) of constituent molecules (so-called mesogens). 

Scheme of Common LC Mesophases

Scheme of common LC mesophases

 

Lab Goals:

Theranostics require a programmable combination of imaging modalities, diagnostics, and therapeutics for the precise treatment of cancer or infection sites. Soft robots are an ideal choice for theranostics due to their lower weight, higher thermodynamic efficiency, biocompatibility, biomimicry, and more applicable mechanical properties, compared to traditional hard robots. To date, most soft robots face two main challenges regarding the choice and development of materials, dictated by the requirements of their applications: (1) the design of nanoscale soft robots capable of both programmable locomotion and the controlled release of chemicals and (2) the ability to control and tune the soft robots using a wireless, non-invasive external stimulus as common stimuli, such as heat, light, and electric fields, are not suitable for non-invasive biomedical applications. Our group’s career goal is to design and synthesize miniature, responsive soft material-based robots that are capable of programmable locomotion, selective catalysis, and programmable chemical release for targeted theranostics, which can be actuated using non-invasive stimuli such as electromagnetic waves. 

Current Research Plan for William Wang Image

 

Current Research Areas:

2022 Wang Lab Poster
Current Research Directions of Dr. William Wang's Lab

double-arrowPublications and Works

See our latest publications and citations on Google Scholar.

2023

51 Chang, Y.; Cai, X.; Syahirah, R.; Yao, Y.; Xu, Y.; Jin, G.; Bhute, V. J.; Torregrosa-Allen, S.; Elzey, B. D.; Won, Y.-Y.; Deng, Q.; Lian, X.; Wang, X.; Eniola-Adefeso, O.; Bao, X.
CAR-Neutrophil Mediated Delivery of Tumor-Microenvironment Responsive Nanodrugs For Effective and Safe Glioblastoma Chemoimmunotherapy.
Nature Communications, in press.

 

50 Zhang, M.; Vokoun, A. E.; Chen, B.; Deng, W.; Dupont, R. L.; Xu, Y.; Wang, X.
Advancements in Droplet Reactor Systems Represent New Opportunities in Chemical Reactor Engineering: A Perspective.
The Canadian Journal of Chemical Engineering, 2023. Link

 

49 Wang, C.; Liu, L.; Wang, X.
Editorial: The Hierarchical Organization of Supramolecular Systems: From Fundamentals to Biomedical Applications, Volume II.
Frontiers in Bioengineering and Biotechnology, in press.

 

48 Lv, H.; Yao, Y.; Li, S.; Wu, G.; Zhao, B.; Zhou, X.; Dupont, R. L.; Kara, I. U.; Zhou, Y.; Xi, S.; Liu, B.; Che, R.; Zhang, J.; Xu, H.; Adera, S.; Wu, R.; Wang, X.
Graphene With Staggered, Ordered Nanometer-Sized Pores Converts Electromagnetic Waves to Electricity.
Nature Communications, in press.

2022

47 Xu, Y.; Yao, Y.; Deng, W.; Fang, J.-C.; Dupont, R. L.; Zhang, M.; Copar, S.; Tkalec, U.; Wang, X.
Magnetocontrollable Droplet Mobility on Liquid Crystal-Infused Porous Surfaces.
Nano Research 2022. Link

47 TOC Magnetocontrollable Droplet Mobility on LCIPS

46 Yao, Y.; Bennett, R. K. A.; Xu, Y.; Rather, A. M.; Li, S.; Cheung, T. C.; Bhanji, A.; Kreder, M. J.; Daniel, D.; Adera, S.; Aizenberg, J.; Wang, X.
Wettability-based Ultrasensitive Detection of Amphiphiles Through Directed Concentration at Disordered Regions in Self-Assembled Monolayers.
Proceedings of the National Academy of Sciences of the United States of America 2022, 119, e2211042119. Link

Wettability Based Detection of Amphiphiles TOC

45. Xu, Y.; Chang, Y.; Yao, Y.; Zhang, M.; Dupont, R. L.; Rather, A. M.; Bao, X.; Wang, X.
Modularizable Liquid Crystal-Based Open Surfaces Enable Programmable Chemical Transport and Feeding Using Liquid Droplets. 
Advanced Materials 2022, 34, 2108788. Link

TOC Liquid Crystal Infused Porous Surfaces based surfaces for cargo release

44. Rather, A. M.; Xu, Y.; Chang, Y.; Dupont, R. L.; Borbora, A.; Kara, U. I.; Fang, J.-C.; Mamtani, R.; Zhang, M.; Yao, Y.; Adera, S.; Bao, X.; Manna, U.; Wang, X.
Stimuli-Responsive Liquid Crystal-Infused Porous Surfaces for Manipulation of Underwater Gas Bubble Transport and Adhesion. 
Advanced Materials 2022, 34, 2110085. Link

LC Surface for Underwater Gas Bubbles TOC

43. Borbora, A.; Dupont, R. L.; Yang, X.; Wang, X.; Manna, U.
Dually Reactive Multilayer Coatings Enable Orthogonal Manipulation of Underwater Superoleophobicity and Oil Adhesion via Post-Functionalization. 
Materials Horizons 2022, 9, 991-1001. Link

Dually Reactive Multilayer Coating TOC

42. Lou, Z.; Wang, Q.; Zhou, X.; Kara, U. I.; Mamtani, R. S.; Lv, H.; Zhang, M.; Yang, Z.; Li, Y.; Wang, C.; Adera, S.; Wang, X.
An Angle-Insensitive Electromagnetic Absorber Enabling a Wideband Absorption. 
Journal of Materials Science and Technology 2022, 113, 33-39. Link

Electromagnetic Abosorber

41. Lou, Z.; Wang, Q.; Kara, U. I.; Mamtani, R. S.; Zhou, X.; Bian, H.; Yang, Z.; Li, Y.; Lv, H.; Adera, S.; Wang, X.
Biomass-Derived Carbon Heterostructures Enable Environmentally Adaptive Wideband Electromagnetic Wave Absorbers. 
Nano-Micro Letters 2022, 14, 11. Link

TOC for Biomass-Derived Carbon Heterostructures Paper

 

2021

40. Zhang, W.; Liu, M.; Dupont, R. L.; Huang, K.; Yu, L.: Liu, S.; Wang, X.; Wang, C.
Conservation and Identity Selection of Cationic Residues Flanking the Hydrophobic Regions in Intermediate Filament Superfamily. 
Frontiers in Chemistry 2021, 9, 752630. Link

TOC for Cationic Residue Paper

39. Wang, C.; Liu, L.; Wang, X. 
Editorial: The Hierarchical Organization of Supramolecular Systems - From Fundamentals to Biomedical Applications. 
Frontiers in Bioengineering and Biotechnology 2021, 9, 754980. Link

TOC for the Hierarchical Organization of Supramolecular Systems article

38. Xu, Y.; Rather, A. M.; Yao, Y.; Fang, J.-C.; Mamtani, R. S.; Bennett, R. K. A.; Atta, R. G.; Adera, S.; Tkalec, U.; Wang, X. 
Liquid Crystal-Based Open Surface Microfluidics Manipulate Liquid Mobility and Chemical Composition On Demand. 
Science Advances 2021, 7, eabi7607. Link

Liquid Crystal Based Microfluidics TOC

37. Xu, Y.; Dupont, R. L.; Yao, Y.; Zhang, M.; Fang, J.-C.; Wang, X. 
Random Liquid Crystalline Copolymers Consisting of Prolate and Oblate Liquid Crystal Monomers. 
Macromolecules 2021, 54, 5376-5387. Link

Random LC Copolymer TOC

36. Lv, H.; Zhou, X.; Wu, G.; Kara, U. I.; Wang, X.
Engineering Defects in 2D g-C3N4 for Wideband, Efficient Electromagnetic Absorption at Elevated Temperature.
Journal of Materials Chemistry A, 2021, 9, 19710-19718. Link

Defects for EM Absorption TOC

35. Wang, C.; Biok, N. A.; Nayani, K.; Wang, X.; Yeon, H.; Ma, C.-K. D.; Gellman, S. H.; Abbott, N. L.
Cationic Side Chain Identity Directs Hydrophobically-Driven Self-Assembly of Amphiphilic β-Peptides in Aqueous Solution.
Langmuir 2021, 37, 3288-3298. Link

Self-Assembly of Peptides

 

2020

34. Xu, Y.; Rather, A. M.; Song, S.; Fang, J.-C.; Dupont, R. L.; Kara, U. I.; Chang, Y.; Paulson, J. A.; Qin, R.; Bao, X.; Wang, X. 
Ultrasensitive and Selective Detection of SARS-CoV-2 Using Thermotropic Liquid Crystals and Image-Based Machine Learning.
Cell Reports Physical Science 2020, 1, 100276. Link

LC Covid Detection

33. Xu, Y.; Yao, Y.; Wang, X. 
Liquid Crystal Polymeric Skins "Sweat" to Provide Real-Time Drug Delivery.
Matter 2020, 3, 606-608. Link

Sweat Drug Delivery TOC

32. Yu, L.; Zhang, W.; Luo, W.; Dupont, R. L.; Xu, Y.; Wang, Y.; Tu, B.; Xu, H.; Wang, X.; Fang, Q.; Yang, Y.; Wang, C.; Wang, C. 
Molecular Recognition of Human Islet Amyloid Polypeptide Assembly by Selective Oligomerization of Thioflavin-T.
Science Advances 2020, 6, eabc1449. Link

Recognition of Polypeptide Assemblies TOC

31. Fuster, H. A.; Wang, X.; Wang, X.; Bukusoglu, E.; Spagnolie, S. E.; Abbott, N. L. 
Programming van der Waals Interactions with Complex Symmetries into Microparticles using Liquid Crystallinity. 
Science Advances 2020, 6, eabb1327. Link

Programming Interactions TOC

30. Zhang, C. T.; Liu, Y.; Wang, X.; Wang, X.; Kolle, S.; Balazs, A. C.; Aizenberg, J. 
Patterning Non-Equilibrium Morphologies in Stimuli-Responsive Gels Through Topographical Confinement.
Soft Matter 2020, 16, 1463-1472. Link

Patterning Morphologies TOC

 

2019

29. Xu, Y.; Yao, Y.; Yu, H.; Shi, B.; Gao, S.; Zhang, L.; Miller, A. L.; Fang, J.-C.; Wang, X.; Huang, K.
Nanoparticle-Encapsulated Hollow Porous Polymeric Nanosphere Frameworks as Highly Active and Tunable Size-Selective Catalysts.
ACS Macro Letters 2019, 8, 1263-1267. Link

Hollow Nanosphere TOC

28. Miao, W.; Yao, Y.; Zhang, Z.; Ma, C.; Li, S.; Tang, J.; Liu, H.; Liu, Z.; Wang, D.; Camburn, M. A.; Fang, J.-C.; Hao, R.; Fang, X.; Zheng, S.; Hu, N.; Wang, X.
Micro-/Nano-Voids Guided Two-Stage Film Cracking on Bioinspired Assemblies for High-Performance Electronics.
Nature Communications 2019, 10, 3862. Link

Film Cracking TOC

 

PRIOR TO OSU 

2018

27. Yao, Y.; Waters, J. T.; Shneidman, A. V.; Cui, J.; Wang, X.; Mandsberg, N. K.; Li, S.; Balazs, A. C.; Aizenberg, J.
Multiresponsive Polymeric Microstructures With Encoded Predetermined and Self-Regulated Deformability.
Proceedings of the National Academy of Sciences of the United States of America 2018, 115, 12950-12955. Link

26. Kim, Y.-K.; Wang, X.; Mondkar, P.; Bukusoglu, E.; Abbott, N. L.
Self-Reporting and Self-Regulating Liquid Crystals.
Nature 2018, 557, 539-544. Link

 

2017

25. Bukusoglu, E.; Martinez-Gonzalez, J. A.; Wang, X.; Zhou, Y.; de Pablo, J. J.; Abbott, N. L.
Strain-Induced Alignment and Phase Behavior of Blue Phase Liquid Crystals Confined to Thin Films.
Soft Matter 2017, 13, 8999-9006. Link

24. Wang, C.; Ma, C. D.; Yeon, H.; Wang, X.; Gellman, S. H.; Abbott, N. L.
Non-Additive Interactions Mediated by Water at Chemically Heterogeneous Surfaces: Non-Ionic Polar Groups and Hydrophobic Interactions.
Journal of the American Chemical Society 2017, 139, 18536-18544. Link

23. Wang, X.; Zhou, Y.; Kim, Y.-K.; Miller, D. S.; Zhang, R.; Martinez-Gonzalez, J. A.; Bukusoglu, E.; Zhang, B.; Brown, T. M.; de Pablo, J. J.; Abbott, N. L.
Patterned Surface Anchoring of Nematic Droplets at Miscible Liquid—Liquid Interfaces.
Soft Matter 2017, 13, 5714-5723. Link

22. Wang, X.; Bukusoglu, E.; Abbott, N. L.
A Practical Guide to the Preparation of Liquid Crystal-Templated Microparticles.
Chemistry of Materials 2017, 29, 53-61. Link

 

2016

21. Wang, X.; Kim, Y.-K.; Bukusoglu, E.; Zhang, B.; Miller, D. S.; Abbott, N. L.
Experimental Insights into the Nanostructure of the Cores of Topological Defects in Liquid Crystals.
Physical Review Letters 2016, 116, 147801. Link

20. Bukusoglu, E.; Wang, X.; Zhou, Y.; Martinez-Gonzalez, J. A.; Rahimi, M.; Wang, Q.; de Pablo, J. J.; Abbott, N. L.
Positioning Colloids at the Surfaces of Cholesteric Liquid Crystal Droplets.
Soft Matter 2016, 12, 8781-8789. Link

19. Wang, X.; Miller, D. S.; Bukusoglu, E.; de Pablo, J. J.; Abbott, N. L.
Topological Defects in Liquid Crystals as Templates for Molecular Self-Assembly.
Nature Materials 2016, 15, 106-112. Link

18. Wang, X.; Bukusoglu, E.; Miller, D. S.; Pantoja, M. A. B.; Xiang, J.; Lavrentovich, O. D.; Abbott, N. L.
Synthesis of Optically Complex, Porous and Anisometric Polymeric Microparticles by Templating from Liquid Crystalline Droplets.
Advanced Functional Materials 2016, 26, 7343-7351. Link

17. Zhou, Y.; Bukusoglu, E.; Martinez-Gonzalez, J. A.; Rahimi, M.; Roberts, T.; Zhang, R.; Wang, X.; Abbott, N. L.; de Pablo, J. J.
Structural Transitions in Cholesteric Liquid Crystal Droplets.
ACS Nano 2016, 10, 6484-6490. Link

16. Bukusoglu, E.; Pantoja, M. A. B.; Mushenheim, P. C.; Wang, X.; Abbott, N. L.
Design of Responsive and Active (Soft) Materials using Liquid Crystals.
Annual Review of Chemical and Biomolecular Engineering 2016, 7, 163-196. Link

15. Eimura, H.; Miller, D. S.; Wang, X.; Abbott, N. L.; Kato, T.
Self-Assembly of Bioconjugated Amphiphilic Mesogens Having Specific Binding Moieties at Aqueous—Liquid Crystal Interfaces.
Chemistry of Materials 2016, 28, 1170-1178. Link

 

2015

14. Wang, X.; Yang, P.; Mondiot, F.; Li, Y.; Miller, D. S.; Chen, Z.; Abbott, N. L.
Interfacial Ordering of Thermotropic Liquid Crystals Triggered by the Secondary Structures of Oligopeptides.
Chemical Communications 2015, 51, 16844-16847. Link

13. Rahimi, M.; Roberts, T. F.; Armas-Perez, J. C.; Wang, X.; Bukusoglu, E.; Abbott, N. L.; de Pablo, J. J.
Nanoparticle Self-Assembly at the Interface of Liquid Crystal Droplets.
Proceedings of the National Academy of Sciences of the United States of America 2015, 112, 5297-5302. Link

12. Bukusoglu, E.; Wang, X.; Martinez-Gonzalez, J. A.; de Pablo, J. J.; Abbott, N. L.
Stimuli-Responsive Cubosomes Formed from Blue Phase Liquid Crystals.
Advanced Materials 2015, 27, 6892-6898. Link

11. Carter, M. C. D.; Miller, D. S.; Jennings, J.; Wang, X.; Mahanthappa M. K.; Abbott, N. L.; Lynn, D. M.
Synthetic Mimics of Bacterial Lipid A Trigger Optical Transitions in Liquid Crystal Droplets at Pictogram-per-Milliliter Concentrations.
Langmuir 2015, 31, 12850-12855. Link

10. Ma, C. D.; Adamiak, L.; Miller, D. S.; Wang, X.; Gianneschi, N. C.; Abbott N. L.
Liquid Crystal Interfaces Programmed with Enzyme-Responsive Polymers and Surfactants.
Small 2015, 11, 5747-5751. Link

 

2014

9. Wang, X.; Miller, D. S.; de Pablo, J. J.; Abbott, N. L.
Organized Assemblies of Colloids Formed at the Poles of Micrometer-Sized Droplets of Liquid Crystal.
Soft Matter 2014, 10, 8821-8828. Link

8. Wang, X.; Miller, D. S.; de Pablo, J. J.; Abbott, N. L.
Reversible Switching of Liquid Crystalline Order Permits Synthesis of Homogeneous Populations of Dipolar Patchy Microparticles.
Advanced Functional Materials 2014, 24, 6219-6226. Link

7. Miller, D. S.; Wang, X.; Abbott, N. L.
Design of Functional Materials Based on Liquid Crystalline Droplets.
Chemistry of Materials 2014, 26, 496-506. Link

 

2013

6. Whitmer, J. K.; Wang, X.; Mondiot, F.; Miller, D. S.; Abbott, N. L.; de Pablo, J. J.
Nematic-Field-Driven Positioning of Particles in Liquid Crystal Droplets.
Physical Review Letters 2013, 111, 227801. Link

5. Miller, D. S.; Wang, X.; Buchen, J.; Lavrentovich, O. D.; Abbott, N. L.
Analysis of the Internal Configurations of Droplets of Liquid Crystal Using Flow Cytometry.
Analytical Chemistry 2013, 85, 10296-10303. Link

4. Mondiot, F.; Wang, X.; de Pablo, J. J.; Abbott, N. L.
Liquid Crystal-Based Emulsions for Synthesis of Spherical and Non-Spherical Particles with Chemical Patches.
Journal of the American Chemical Society 2013, 135, 9972-9975. Link

 

2010

3. Luo, Y.; Wang, X.; Li, B.; Zhu S.
Toward Well-Controlled ab Initio RAFT Emulsion Polymerization of Styrene Mediated by 2-(((Dodecylsulfanyl)Carbonothioyl)Sulfanyl)Propanoic Acid.
Macromolecules 2010, 44, 221-229. Link

2. Luo, Y.; Wang, X.; Zhu, Y.; Li, B.; Zhu S.
Polystyrene-Block-Poly(n-Butyl Acrylate)-Block-Polystyrene Triblock Copolymer Thermoplastic Elastomer Synthesized via RAFT Emulsion Polymerization.
Macromolecules 2010, 43, 7472-7481. Link

 

2009

1. Wang, X.; Luo, Y.; Li, B.; Zhu S.
Ab Initio Batch Emulsion RAFT Polymerization of Styrene Mediated by Poly(Acrylic Acid-b-Styrene) Trithiocarbonate.
Macromolecules 2009, 42, 6414-6421. Link

double-arrowGroup Members

EQUIPMENT

double-arrowMicroscopes

Fluorescence Microscope

Fluorescence Microscope

Polarized Light Microscope with Hot Stage

Polarized Light Microscope with Hot Stage

Polarized Light Microscope

Polarized Light Microscope

double-arrowSurface Chemistry

Goniometer

Goniometer

Spin Coater

Spin Coater

double-arrowMaterial Synthesis

Tube Furnace

Tube Furnace

Sonicators

Sonicator

double-arrowThermal Analysis

Wang-W-Differential scanning calorimetry

Differential Scanning Calorimetry (DSC)

Wang-W-Thermogravimetric analysis (TGA)

Thermogravimetric Analysis (TGA)

double-arrowTwin and Single Screw Extruders

Wang-W-Leistritz ZSE-27 Fully Intermeshing Twin Screw Extruder-1

Leistritz ZSE-27 Fully Intermeshing Twin Screw Extruder

Wang-W-Leistritz ZSE-19 Fully Intermeshing Twin Screw Extruder 1

Leistritz ZSE-19 Fully Intermeshing Twin Screw Extruder

Wang-W-HAAKE Rheomex 252 Single Screw Extruder

HAAKE Rheomex 252 Single Screw Extruder

Wang-W-Pelletizer Machine

Pelletizer Machine

double-arrowOther Equipment

Wang-W-Fourier-transform infrared spectroscopy (FTIR)

Fourier-transform infrared spectroscopy (FTIR)

Centrifuge

Centrifuge

Vacuum Oven

Vacuum Oven

Oven

Oven