Dear Alumni and Friends of the Department:

The past year was one of progress and growth for our department. We have become more accustomed to our new name, the William G. Lowrie Department of Chemical and Biomolecular Engineering, but for our 160 sophomores, it is all they have ever known. Those students completing our first courses in Material and Energy Balances comprise the largest class we have ever seen. Our faculty and graduate students who serve as teaching assistants are doing their very best to provide a quality education even though they are coping with fairly large section sizes. Last year we went to three sections with enrollments of 54, 57 and 67 students in our first course, ChBE 200, Chemical Process Calculations. Our graduating class was also large with 72 students earning their degrees last year and for the next several years we expect graduating classes of over 100.

To help with the increased enrollment and to add a new dimension to our research capabilities, we have added one new faculty member, David Wood, who comes to us from Princeton University. David is a chemical engineer with research interests in applied molecular biology, and we are most pleased to welcome him as our 18th faculty member. Additionally, John Corn, who was helping us as an instructor in our summer lab and design courses, retired. We were able to replace him with Carlo Scaccia. Both Carlo and John had distinguished careers at Ashland Chemicals and both were on hand last summer to lead our unit operations course taken by 118 of our juniors and seniors. Profiles of David Wood and Carlo Scaccia can be found in this Annual Report.

The Department continues to be very research intensive. Research expenditures last year were at an all time high of more than $13.3M or $780K/ faculty member on average. Large grants were won by Jim Lee in the area of nanotechnology, and several grants related to energy research were won by L.S. Fan, Winston Ho and Umit Ozkan. This was the third consecutive year that research expenditures exceeded $12M and was only made possible by having our entire faculty very active in research along with their postdocs, graduate students and undergraduate researchers.

Finally, plans for our new building are proceeding along the promised timetable of having us occupy a new Koffolt Laboratories by the end of 2014. The site will be just West of our current location with the buildings Boyd, Johnston, Aviation and Haskett, (which are not in good condition) being torn down and replaced by a large Chemical and Biomolecular Engineering and Chemistry (CBEC) complex devoted to a collaborative chemical sciences research and education environment. The building will be more than 210,000 gross square feet with 109,000 assignable square feet for our two departments. The Koffolt Laboratories portion of the complex will occupy 60% of the space. Most of the research in Chemistry’s Evans Laboratory will be relocated to the new building. We are excited about the possibilities of increased research cooperation with our colleagues in Chemistry. Meanwhile the total building cost is $126M, including our fund raising obligation of $17.5M. We are making good progress in this capital campaign and thank all those alumni and friends who have given or pledged gifts for the building. Progress to date takes us to about 75% of our goal, though a good number of space naming opportunities remain.

Best wishes on behalf of our faculty, staff and students.

Stuart L. Cooper
Professor and Chair
coopers@chbmeng.ohio-state.edu
614-247-8015
Table of Contents

Letter from the Chair

<table>
<thead>
<tr>
<th>News</th>
<th>Graduate Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Professor Fan's Clean Coal Research</td>
<td>20 Ranking</td>
</tr>
<tr>
<td>3 Distinguished Alumnus Award Recipients</td>
<td>20 Faculty Productivity</td>
</tr>
<tr>
<td>4 Jeffrey Chalmers-Tumor Cell Research</td>
<td>21 Graduate Degrees Granted</td>
</tr>
<tr>
<td>5 Stuart Cooper Receives Stimulus Grant</td>
<td>21 Graduate Student Fellowships</td>
</tr>
<tr>
<td>5 NSEC Receives Grant</td>
<td>21 Research Expenditures</td>
</tr>
<tr>
<td>5 Umit Ozkan Receives WIC Mentorship Award</td>
<td>22 Graduate Program</td>
</tr>
<tr>
<td>6 Bhavik Bakshi's Energy Life Cycle Research</td>
<td>23 Seminar Series</td>
</tr>
<tr>
<td>6 New Faculty Member David Wood</td>
<td></td>
</tr>
<tr>
<td>7 Advancing Production of Biofuel</td>
<td></td>
</tr>
<tr>
<td>7 New Instructor Carlo Scaccia</td>
<td></td>
</tr>
<tr>
<td>8 Oxygen-Carrying Solutions for Transfusion Medicine-Andre Palmer</td>
<td></td>
</tr>
<tr>
<td>9 Winston Ho and Group Develop High-Flux Desalination Membranes</td>
<td>24 2009 Alumni Donors</td>
</tr>
<tr>
<td>10 Lowrie Lectures</td>
<td>26 Faculty</td>
</tr>
<tr>
<td>11 2009 Advisory Board Meeting</td>
<td>37 CBE Faculty and Staff</td>
</tr>
</tbody>
</table>

Undergraduate Program

12 Course Enrollment
13 Cooperative Learning Experiences
14 2009 Placement Record
17 Department Graphs
18 Undergraduate Scholarship Information

William G. Lowrie Department of Chemical and Biomolecular Engineering
125 Koffolt Laboratories, 140 West 19th Ave., Columbus, OH 43210
Phone: 614-292-6591, Fax: 614-292-3769, www.chbmeng.ohio-state.edu

Photography: Geoff Hulse
Professor L.S. Fan’s Clean Coal Research is Supported by The U.S. Department of Energy

The U.S. Department of Energy has awarded a $5 million grant to professor L.S. Fan for research related to clean coal technology. Fan’s grant is part of $151 million awarded through the Department of Energy’s recently-formed Advanced Research Projects Agency-Energy ("ARPA-E").

L.S. Fan, internationally recognized for his expertise in energy and environmental reaction engineering, will use the grant to further develop a process he invented to convert coal and biomass to electricity while capturing carbon dioxide emissions.

Dr. Fan has successfully demonstrated the process, called syngas chemical looping, on a small pilot scale. With the new grant, he will scale up the process to a 250 kW pilot plant to obtain performance data to prove the process eventually can be commercialized for coal-based power plants, contributing to the United States’ efforts toward energy independence and greenhouse gas emission reductions.

The syngas chemical looping process Fan and his research group developed uses an iron oxide-based chemical looping medium to indirectly and flexibly convert carbonaceous fuels such as coal and biomass into hydrogen and/or electricity while at the same time capturing and separating the carbon dioxide. The process is simpler and more efficient compared to conventional gasification processes. Moreover, the pollutant and greenhouse gas management cost for the syngas chemical looping process is minimal compared to conventional process schemes.

Fan’s 250 kW pilot plant demonstration will be at the National Carbon Capture Center, which the U.S. Department of Energy formed this spring in Wilsonville, Ala., for a combined operating time of more than 3,000 hours. Fan expects the testing of the new pilot plant to finish by early 2013, with the next scale up to follow immediately.

Fan’s team will work with the Particulate Solids Research Institute to design and operate a cold flow model for the plant; Shell/CRI in preparing the iron oxide-based chemical looping medium; Babcock and Wilcox Co., Air Products and Chemicals Inc., and IWI Inc. for the design and construction of the plant; and CONSOL Energy, which will independently perform techno-economic analysis and collaborate with Ohio State and other partners on the commercialization plan.
Congratulations to the following Chemical Engineering Alumni
Recipients of the 2009 Distinguished Alumnus Award!

James F. Dietz
Jim Dietz, a native of Botkins, Ohio, received both a Bachelor of Chemical Engineering degree in 1969 and a Master of Science in Chemical Engineering in 1970 from The Ohio State University.

In 1969, Dietz began his career with Standard Oil of Ohio (Sohio) at the Vistron Chemical Plant in Lima, Ohio. He worked in various engineering and production supervisor positions in the nitrogen fertilizer facilities until 1980, when he transferred to Vistron's new grassroots chemical plant near Victoria, Texas. After construction and startup of this new complex, Dietz continued to work there as operations manager until 1989. In 1986 British Petroleum (BP) acquired Standard Oil of Ohio, and in 1989, Dietz accepted a position in London as project director of a new European chemical plant. After one year, the project was shelved and he became production manager at BP Chemicals chemical complex in Grangemouth, Scotland. In 1993, Dietz resigned from BP after 24 years of service to take the position of vice-president of manufacturing with Arcadian Corporation in Memphis, Tenn. When Arcadian was purchased in 1997 by Potash Corporation of Saskatchewan (PCS), he was named executive vice president, PCS Nitrogen. In November 2000, Dietz was named executive vice president and chief operating officer for Potash Corporation. In addition to responsibility for Potash Corporation's worldwide operations, he has responsibility for the company’s safety, health and environment performance and procurement functions.

Dietz and his wife, Patricia (Pat), reside in Northfield, Illinois, a suburb of Chicago. They have four children, Anita, Bradley, Douglas, and Marcia, and five grandchildren.

F. William Hauschildt
After receiving his bachelor's degree in chemical engineering from Ohio State in 1967, Bill Hauschildt began his career at Amoco R&D.

Over the years, Hauschildt developed an extensive technical, operational and commercial background. Among his posts with Amoco, he has been a refining process and catalysis researcher; technology manager at R&D (Process, Catalysis & Environmental Research), Operations; operations manager at the Whiting Indiana Refinery; health safety and environment regional manager (supporting Refineries, Pipeline, Marketing and Chemical plant operations); and refining planning manager (Capital Spending and Business Planning), all in the Chicago area. From 1996 to 1998, he was based in London, and was responsible for an Off-Shore North Sea Oil Brent system joint venture focused on late life reservoir and platform operations management. He was also responsible for technical and environmental preparations and acted as liaison with the UK government in planning for decommissioning of the field. After the BP-Amoco merger, Hauschildt’s last BP assignment was on the ARCO Merger Integration Team, where he was responsible for the integration of the ARCO Refining operations and related technology development and support into the BP Amoco refining system.

Hauschildt also holds a master's degree in chemical engineering from the Illinois Institute of Technology and participated in Harvard's Program for Management Development. He holds five U.S. patents in refining process and catalysis and was responsible for implementing technical developments and later in his career, operations management at Amoco. He was active in the advisory group for Ohio State's departments of chemistry and chemical engineering, in the area of catalysis. He was also involved with the advisory group to Northwestern University's Catalysis Center.
Professor Jeffrey Chalmers and colleagues have developed devices to detect circulating tumor cells from patients with head, neck, breast, and other cancers. Jeff’s team has earned eight patents based on this technology, as well as created jobs and attracted multimillion dollar funding. Ultimately this capability has the potential for saving lives. Their medical invention is just one example of how Ohio State innovation bolsters the state’s economy.

For example, in collaboration with Professor Ratnasingham Sooryakumar, of OSU’s Department of Physics, the device was developed from a tiny piece of square-centimeter silicon inlaid with rows of zigzagging magnetic wires. At each corner, the wire behaves like two magnets pointed north to north or south to south. The fields of the two magnets create a point of strong attraction just above them. A nearby magnetic object, such as a magnetically-tagged cell is attracted to the corner and gets stuck there.

To get the particles moving, the researchers then place two magnetic fields around the chip one in the plane of the chip and the other perpendicular to it. By flipping the direction of these fields, the researchers can guide tagged cells along the zigzagging wire and even make them jump from one wire to the next. The researchers computerized the magnetic field switching so that a user can steer the cells by simply handling a joystick. Chalmers and colleagues put the device through its paces with magnetically-tagged T-cells, the body’s guardians against infection. They snapped the cells to attention at one end of the chip, marched them down to the other end, and made them hop from one wire to another, reaching speeds of about 20 micron, or about a one-fifth the width of a human hair, per second.

Chalmers said that the device would be ideal for examining tumor cells. “Part of the problem with cancer is that it’s our own cells going haywire, so it’s a heck of a lot harder to figure out what’s different,” Chalmers said. With this method, he said, researchers could magnetically tag the well-understood healthy cells and then remove them from a sample, leaving only the cancerous cells. Chalmers said this would be a boon to both a researcher studying a specific type of cancer or a clinician diagnosing a patient.

The small magnetic fields are gentle on specimens; the device works on a flat surface, an improvement over other methods; and it’s also cost-effective with the whole set-up costing only about $200.

Article excerpted from Foxnews.com Photo by Rick Harrison
The Nanoscale Science and Engineering Center (NSEC) wins a $12.5M 5 year renewal from NSF

The Nanoscale Science and Engineering Center (NSEC) for Affordable Nanoengineering of Polymeric Biomedical Devices (CANPBD) was recently awarded a $12.5M grant by the National Science Foundation in support of the Center’s renewal through Phase II (10/01/2009-09/30/2014). Professor James Lee continues as the Principal Investigator.

The research vision of CANPBD is to revolutionize medical diagnosis and medicine by establishing an affordable multiscale synthesis and fabrication protocol leading to nanofluidic and polymer therapeutic devices for personalized nanomedicine. An important emphasis of Phase II is to commercialize the developed technologies in close collaboration with end users. The broader impacts of the activities planned for Phase II are to (1) commercialize nanoengineered biomedical devices through affordable manufacturing methods and novel design, (2) extend research results from medical/biology applications to functional nanocomposites, water treatment, homeland security, environmental protection, and food industry toxicology, (3) establish new products and new ... jobs in the US, and (4) train the 21st century workforce in economically important and critical high-tech fields.

Stimulus Grant Funds Health Testing Research

A team of Ohio State researchers has received federal stimulus money to develop a test for detecting rare cells that are among the most promising potential biomarkers of vascular health and aging.

Stuart Cooper, Professor and Department Chair, and Nicanor Moldovan, an investigator with the Davis Heart and Lung Research Institute, received a $1.2 million, two-year Grand Opportunities award from the American Recovery and Reinvestment Act “stimulus package” of the National Institute of Aging at the National Institutes of Health.

Current testing for the concentration of these cells, called endothelial progenitor cells, takes about a month. Cooper, Moldovan and colleagues are working to develop a much faster process — requiring just one to two days — that would use specially designed peptides from proteins that would adhere to the progenitor cells. The peptides would be connected to magnetic nanobeads so that once they adhere to the progenitor cells, they could be separated from the rest of the blood cells magnetically. The progenitor cells would then be grown into cell colonies for further analysis.

The researchers plan to use the method to test blood of populations of children, adults and seniors to determine whether various disease states could be detected via the concentrations of the cells. The research is estimated to have a combined direct and indirect economic impact of $3.3 million and 10 full-time jobs over its two-year period.

Umit Ozkan Receives WIC Mentorship Excellence Award

Dr. Umit Ozkan is the 2009 recipient of AIChe’s Women’s Initiative Committee (WIC) Mentorship Excellence Award. This award recognizes Dr. Ozkan’s dedication and contributions to the development of the next generation of chemical engineers through outstanding mentoring and teaching. Dr. Ozkan joined our faculty in 1985. As stated in the award announcement her success in research, teaching and administration and her personal interactions with students have provided a role model for a great many female students as they embark on their professional careers. Dr. Ozkan received the Mentorship Excellence Award of $5,000 at the WIC Lunch at the National AIChe meeting in Nashville on November 9th.
Bhavik Bakshi’s Energy Life Cycle Research

Bhavik Bakshi, professor of chemical and biomolecular engineering, aims to change the practice of implementing breakthrough technologies without first examining the entire energy life cycle — from obtaining the raw material through disposing of the product.

“We need to think about the scale of use and broader applications,” says Bakshi, who is research director of the university’s Center for Resilience. “Omitting this step is one of the root causes of the unexpected surprises that often come with new technologies.”

With funding from the National Science Foundation and Environmental Protection Agency, Bakshi is examining the environmental burden of carbon nanofibers, desired in various manufacturing applications for their mechanical strength, thermal and flame resistance, barrier properties, electrical conductivity and resistance to chemical attack.

To determine the life cycle energy use of those carbon nanofibers, he examined each stage of their cycle. First, he and L. James Lee, along with doctoral student Vikas Khanna, compared the manufacture of nanofibers with that of traditional materials on an equal mass basis. “The best carbon nanofiber currently requires 300 times more energy than steel for production on a per-kilogram basis. That’s the killer,” Bakshi says. Since processes using nanomaterials are in nascent stages, he expects the ratio to improve as new technologies are developed.

In addition, energy savings resulting from the use of carbon nanofibers in products as well as the increase or decrease in demand for those products will be deciding factors when comparing the materials. Bakshi and Khanna continued the research by evaluating the carbon nanofibers when they are used in polymer nanocomposites for automotive body parts. In an analysis of the materials from the natural resources to the factory gate, they found that vehicles with polymer nanocomposite parts, depending on the quantities of carbon nanofibers and the other materials in the resulting composites, use 1.4 to 10 percent less energy than a conventional car, mainly because the lighter nanocomposites result in less fuel consumption as the lighter car is driven. This corresponds to driving 9,000 to 13,000 miles less during the life of an average car.

Faculty Member—David Wood

David Wood joined the faculty this past fall as an associate professor. His work focuses on protein engineering, bioseparations and biosensing. Originally from El Paso, Texas, he completed a double major in Chemical Engineering and Molecular Biology as an undergraduate at Caltech in 1990. He then spent some time in industry before going on to graduate school. His Ph.D. work at Rensselaer Polytechnic led to the generation of an engineered, evolved self-cleaving protein subunit for applications in recombinant protein purification. He then joined the Chemical Engineering faculty at Princeton University as an assistant professor in 2001. At Princeton, he combined this self-cleaving element with two novel self-cleaving purification tags to create powerful and convenient non-chromatographic bioseparation technologies. In addition, he has created new hybrid proteins that allow simple bacterial cells to react to human hormones and hormone-like chemicals. These cells are now being used to discover new drugs for various disorders, as well as detect hormone-like pollutants in the environment. These technologies have now been requested by over 100 laboratories worldwide, and have the potential to significantly impact the way protein-based pharmaceuticals are manufactured worldwide.
Advancing Production of Biofuel

Engineers at Ohio State are testing a new biobutanol fermentation technology at a recently constructed pilot plant in Gahanna, Ohio.

Shang-Tian Yang, professor of chemical and biomolecular engineering, and his colleagues developed a way to double the production of the biofuel butanol, which might someday replace gasoline in automobiles. With support from a $1 million grant from Ohio Department of Development Third Frontier Advanced Energy Program, Yang partnered with ButylFuel, a start-up company, to build the pilot plant.

Yang’s process improves on the conventional method for producing butanol in a bacterial fermentation tank. Normally, he explains, bacteria could only produce a certain amount of butanol — perhaps 15 grams of the chemical for every liter of water in the tank — before the tank would become too toxic for the bacteria to survive. Yang and his colleagues developed a mutant strain of the bacterium clostridium beijerinckii in a bioreactor containing bundles of polyester fibers. In that environment, the mutant bacteria produced up to 30 grams of butanol per liter.

Once developed as a fuel, butanol could potentially be used in conventional automobiles in place of gasoline while producing more energy than another alternative fuel, ethanol. “Today, the recovery and purification of butanol account for about 40 percent of the total production cost,” explains Yang. “Because we are able to create butanol at higher concentrations, we believe we can lower those costs and make biofuel production more economical.”

Instructor-Carlo Scaccia

Carlo Scaccia joined the Department last summer, bringing with him thirty years of experience in the Chemical Industry as researcher and executive officer. His research interests encompass polymers, composites, adhesives/sealants/coatings, three-phase reactor dynamics, electronic chemicals, fermentation/biochemistry, rheology, thermal oxidation, water treatment, instrumentation and bench scale-pilot plant-commercial operations. After receiving his Ph.D. from SUNY, he joined Dow/Union Carbide where he conducted and directed research on new process/product development. He subsequently joined Ashland Inc. as VP of Research and later as Officer-VP and General Manager of the Specialty Polymers & Adhesives Division. Most recently, he held the concurrent positions of General Manager US Operations and VP of Global Technology at Sensient Technologies in the food and beverage flavors industry. The eleven patents he was granted have been commercialized. He has published several articles and previously taught undergraduate courses at SUNY and OSU. He holds a registered professional engineer license and is a graduate of the Harvard Business School-Advanced Management Program.
Associate professor, Andre Palmer, and his research team are developing oxygen-carrying solutions for transfusion medicine. One area of focus is on synthetic red blood substitutes, which may one day lead to a universal blood supply.

In the United States, allogeneic red blood cell (RBC) transfusion has long been considered an important treatment option for patients suffering from blood loss. However, the recent emergence of infectious agents such as the H1N1 influenza virus and others has put the blood supply at risk.

Currently, the American Red Cross tests donated blood for hepatitis B and C viruses, human immunodeficiency virus (HIV), human T-cell lymphotropic virus, syphilis, West Nile virus and the agent of Chagas disease. As a result the safety of the U.S. blood supply, in terms of transfusion, transmitted diseases is quite good. However as new infectious agents emerge the costs of a unit of blood increases; since additional screening tests may have to be conducted before blood can be distributed to health care providers. Of more concern is the fact that donated blood may contain yet to be identified infectious agents. In addition there are new concerns regarding the safety of blood transfusions following extended durations of storage.

The safety of the blood supply in developing countries is even more problematic, since serious concerns still exist about the risks associated with blood transfusion including: potential contamination by blood-bourn pathogens; fatal immunological reactions; acute lung injury and even mistransfusion. To further compound the problem, the availability of human blood is even more limited in emergency situations such as wars or natural disasters. Therefore, it has been a long-term goal of scientists and engineers to develop an efficacious and safe universal RBC substitute for use in transfusion medicine.

Toward this goal, Palmer is developing a wide range of hemoglobin-based oxygen carriers (HBOCs) including: polymerized hemoglobins, vesicle encapsulated hemoglobins and recombinant hemoglobins. These HBOCs can be used as RBC substitutes in transfusion medicine and oxygen delivery vehicles in tissue engineering.
Professor Winston Ho and Group Develop High-Flux Desalination Membranes

Professor **Winston Ho** and his group members have developed an advanced membrane fabrication technique, shown schematically in Figure 1, for the synthesis of high-flux water desalination membranes. In this approach, a selected hydrophilic additive is incorporated into the interfacially polymerized thin film to increase the hydrophilicity of the membrane. As shown in this figure, the aqueous solution containing the selected hydrophilic additive and a diamine (m-phenylenediamine) is coated on the surface of microporous polysulfone support with a typical pore size of 50 nm. An interfacial polymerization is then carried out between the aqueous amine solution and a hydrocarbon solution containing trimesoyl chloride to synthesize the high-flux reverse osmosis (RO) membrane. The hydrophilic additive incorporated in the membrane has provided an additional pathway for water transport across the membrane, resulting in a very high flux of water along with a high salt rejection both for brackish water (with 0.2% sodium chloride solution at 225 psi (1.55 MPa) pressure) and seawater (with 3.28% sodium chloride solution at 800 psi (5.51 MPa) pressure) desalination applications. The fluxes have been significantly higher (about 100%) than those for the state-of-the-art membranes in brackish water and seawater desalination.

This group has also developed a fouling resistant coating based on crosslinked poly(ethylene glycol) for the high flux membranes. The coating on the top of the high flux membrane not only provides strong fouling resistances to tannic acid, a common foulant encountered in brackish water desalination and to the sodium salt of alginic acid derived from seaweed in seawater desalination, but also can protect the membrane during the rolling operation in the fabrication of a membrane element. The membrane will be evaluated by the US Navy for the future shipboard desalination. This work has been sponsored by the Office of Naval Research.

The membrane has exhibited good stability. Figure 2 shows the constant flux and salt rejection for a run of 30 days. There were no significant changes of the membrane from the stability test detected by Fourier transform infrared spectrometry (FTIR) as shown in Figure 3.
Lowrie Lectures

The 2009 Lowrie Lectures were held on May 7-8, with this year’s lecturer being Dr. Gabor A. Somorjai, a University Professor in the Department of Chemistry at the University of California, Berkeley. Dr. Somorjai received his Ph.D. degree in Chemistry from the University of California, Berkeley in 1960 and after 4 years at IBM, he returned to Berkeley as an Assistant Professor where he has been Professor of Chemistry since 1972. He was designated University Professor in 2002 and also serves as Director of the Surface Science and Catalysis Program at the Center of Advanced Materials at the Lawrence Berkeley National Laboratory.

Professor Somorjai has educated 125 Ph.D. students and more than 250 postdoctoral fellows, about 100 of them hold faculty positions and many more are leaders in industry. He is the author of more than 1,000 scientific papers in the fields of surface chemistry, heterogeneous catalysis, and solid state chemistry. He has written three textbooks, *Principles of Surface Chemistry*, Prentice Hall, 1972; *Chemistry in Two Dimensions: Surfaces*, Cornell University Press, 1981; and *Introduction to Surface Chemistry and Catalysis*, Wiley-Interscience, 1994; and a monograph, *Adsorbed Monolayers on Solid Surfaces*, Springer-Verlag, 1979.

Among his many honors are the National Medal of Science, membership in the National Academy of Sciences and the American Academy of Arts and Sciences, the Langmuir Prize, the Wolf Prize, the Henry Albert Palladium Medal, and a number of research awards from the American Chemical Society including the Priestley Medal and 8 Honorary Doctorates.

Lecture I: Molecular Foundations of Catalytic Selectivity by Metals

Heterogeneous metal catalysts are nanoparticles that carry out reactions at high reactant gas pressures or in the liquid phase. Model surfaces were used to study heterogeneous catalytic reactions in order to control and monitor the atomic surface structure, composition and reaction intermediates while simultaneously measuring reaction rates and selectivities. To obtain quantitative correlations between catalytic reaction kinetics and the molecular factors that control reaction dynamics. Reactions were found to induce restructuring of the metal surfaces and mobility of adsorbed molecules. Nanosize transition metal catalysts achieve facile restructuring and rapid change in surface composition under reaction conditions as their low atom coordination permits rapid bond rearrangements. Improved techniques for molecular studies of surfaces that provide better time resolution and spatial resolution will enhance our ability to study the dynamics of surfaces, which are key to both activity and selectivity during catalysis. The control of metal nanoparticle size and shape provides opportunities to achieve superior reaction selectivity.

Lecture II: Surface Science: Creator of Health, Wealth and New Sources of Energy

The catalytic converter on automobiles greatly improved the air quality of Los Angeles. Air separation to oxygen and nitrogen is at the heart of water purification technologies. Chemical manufacturing to produce the desired product selectively without waste byproducts is the challenge of chemical process technologies and biotechnologies which are commonly called “green chemistry”. The chemical, mechanical, optical, electrical and magnetic properties of surfaces studied on the molecular scale led to developments of new high technology industries that have enriched the United States.
2009 Advisory Board Meeting

The Advisory Board Meeting was held March 19, 2009, with attending board members Linda Broadbelt, Terry Chern, Nancy Dawes, Karen Murphy, John Salladay, Sunil Satija, Bob Tatterson, Drew Weber, and Mike Winfield.

Department Chair Stuart Cooper discussed department highlights, new faculty hire David Wood, the increasing enrollment numbers of the undergraduate program, and the University’s plan to switch from quarters to semesters.

Rosemary Hill, Director of Engineering Career Services, informed the group that the Department’s career services program is one of the best in the nation and CBE students are very pleased with the services they receive.

Brian Endres, Coordinator of Academic Advising, talked about recruitment and outreach and how the Department is doing a better job engaging female and minority students.

Dean Greg Washington discussed changes being made by the College of Engineering and plans for the Koffolt Building Campaign.

Faculty member Jim Rathman discussed possible revisions to the B.S. program’s educational objectives. Board members liked the focus of the new objectives on expected accomplishments of alumni and suggested adding volunteerism (non-professional service) to the list. Board members also suggested putting more emphasis on the ability of graduates to integrate knowledge from different fields and the expectation that alumni will be successful in a wide range of diverse careers.

Faculty Member Dave Tomasko and Brian Endres addressed the group regarding undergraduate research noting that there has been an increase in undergraduate research opportunities and an effort to increase the number of CBE students who graduate with honors distinction. The next speaker was faculty member Barbara Wyslouzil who presented her research on how aerosols affect the environment, health and various technologies.

The meeting concluded with a discussion among board members and Stuart Cooper regarding undergraduate enrollment pressure, interactions with industry and department resources.
Undergraduate Program

Course Enrollment

<table>
<thead>
<tr>
<th>Winter 2009</th>
<th>Students</th>
<th>Course</th>
<th>Instructor</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>66</td>
<td>200</td>
<td>Dr. Kurt Koelling</td>
<td>Chemical Processes & Calculations I</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>201</td>
<td>Dr. Jessica Winter</td>
<td>Chemical Processes & Calculations II</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>489</td>
<td>Dr. James Rathman</td>
<td>Professional Practice in Industry</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>508</td>
<td>Dr. Umit Ozkan</td>
<td>Thermodynamics I</td>
</tr>
<tr>
<td></td>
<td>91</td>
<td>509</td>
<td>Dr. Isamu Kusaka</td>
<td>Thermodynamics II</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>521</td>
<td>John Clay (Adjunct)</td>
<td>Transport Phenomena II</td>
</tr>
<tr>
<td></td>
<td>118</td>
<td>522</td>
<td>Dr. S.T. Yang</td>
<td>Transport Phenomena III</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>713</td>
<td>Dr. Umit Ozkan</td>
<td>Fuel Cell Catalysis</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>733</td>
<td>Dr. Jeff Chalmers</td>
<td>Novel Separation Processes</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>764</td>
<td>Dr. Bhavik Bakshi</td>
<td>Process Design</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>769</td>
<td>Dr. S. Lee</td>
<td>Biomedical Nanotechnology</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>771</td>
<td>Dr. Barbara Wyslouzil</td>
<td>Air Pollution</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>777</td>
<td>Dr. L. James Lee</td>
<td>Polymer Nano Engineering</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>779</td>
<td>Dr. James Rathman</td>
<td>Experimental Design</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>693</td>
<td>Various</td>
<td>Undergraduate Research</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>H783</td>
<td>Various</td>
<td>Undergraduate Honors Research (Thesis Track)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring 2009</th>
<th>Students</th>
<th>Course</th>
<th>Instructor</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63</td>
<td>201</td>
<td>Dr. Jack Zakin</td>
<td>Chemical Processes & Calculations II</td>
</tr>
<tr>
<td></td>
<td>121</td>
<td>420/520</td>
<td>Dr. Martin Feinberg</td>
<td>Transport Phenomena I</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>489</td>
<td>Dr. James Rathman</td>
<td>Professional Practice in Industry</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>509</td>
<td>Dr. Michael Paulaitis</td>
<td>Thermodynamics II</td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>523</td>
<td>John Clay (Adjunct)</td>
<td>Unit Operations</td>
</tr>
<tr>
<td></td>
<td>122</td>
<td>610</td>
<td>Dr. Umit Ozkan</td>
<td>Kinetics</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>734</td>
<td>Dr. James Rathman</td>
<td>Molecular Informatics</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>750</td>
<td>Dr. Stuart Cooper</td>
<td>Profession of Chemical & Biomolecular Engineering</td>
</tr>
<tr>
<td></td>
<td>83</td>
<td>762</td>
<td>John Corn</td>
<td>Process Development</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>764</td>
<td>Dr. Jeffrey Chalmers</td>
<td>Process Design</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>772</td>
<td>Dr. Bhavik Bakshi</td>
<td>Principles of Sustainable Energy</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>774</td>
<td>Dr. W.S. Winston Ho</td>
<td>Polymer Membranes</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>775</td>
<td>Dr. Kurt Koelling</td>
<td>Rheology of Fluids</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>693</td>
<td>Various</td>
<td>Undergraduate Research</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>H783</td>
<td>Various</td>
<td>Undergraduate Honors Research (Thesis Track)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer 2009</th>
<th>Students</th>
<th>Course</th>
<th>Instructor</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>118</td>
<td>630</td>
<td>John Corn</td>
<td>Unit Operations Lab</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>755</td>
<td>Bob Johnson (Adjunct)</td>
<td>Chemical Process Safety</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>693</td>
<td>Various</td>
<td>Undergraduate Research</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>H783</td>
<td>Various</td>
<td>Undergraduate Honors Research (Thesis Track)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autumn 2009</th>
<th>Students</th>
<th>Course</th>
<th>Instructor</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>110</td>
<td>200</td>
<td>Dr. Umit Ozkan</td>
<td>Chemical Processes & Calculations I</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>420</td>
<td>Dr. Andre Palmer</td>
<td>Transport Phenomena I</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>489</td>
<td>Dr. James Rathman</td>
<td>Professional Practice in Industry</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>508</td>
<td>Dr. Michael Paulaitis</td>
<td>Thermodynamics I</td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>521</td>
<td>Dr. Isamu Kusaka</td>
<td>Transport Phenomena II</td>
</tr>
<tr>
<td></td>
<td>114</td>
<td>624</td>
<td>Dr. Bhavik Bakshi (Adjunct)</td>
<td>Process Dynamics & Controls</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>760</td>
<td>Dr. L.S. Fan</td>
<td>Engineering Economics & Strategy</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>761</td>
<td>Dr. Jack Zakin</td>
<td>Chemical Process Plants</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>765</td>
<td>Dr. Jessica Winter</td>
<td>Principles of Biochemical Engineering</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>773</td>
<td>Dr. Stuart Cooper</td>
<td>Introduction to High Polymer Engineering</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>790</td>
<td>Dr. James Rathman</td>
<td>Colloids & Surfaces</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>693</td>
<td>Various</td>
<td>Undergraduate Research</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>H783</td>
<td>Various</td>
<td>Undergraduate Honors Research (Thesis Track)</td>
</tr>
</tbody>
</table>
Cooperative Learning Experiences:
Autumn 2008 through Autumn 2009

The Engineering Cooperative Education & Internship Program (ECIP) helps undergraduate students to obtain career-related employment of two types: cooperative education (co-op) positions and internships. A co-op experience provides an opportunity to apply what is learned in the classroom in career-related positions by alternating quarters of full-time coursework with periods of paid, full-time employment. Internship involves one work period with an employer. A work period may last for one quarter or for two consecutive quarters. Summer internships are the most popular among students and employers.

Students meet with Brian Endres and Holly Proudy to evaluate different schedule arrangements before interviewing because many employers hire for specific “rotations”. For instance, students may work full-time during the summer quarter, attend full-time classes in autumn, and return to their employer for full-time work in the winter. The most popular term to work is the summer. Last summer we had 28 students at internships and 31 at co-ops (as reported to ECS).

Students hired for internships and co-ops:

Anderson International Corporation: Eric Stilbora
Batelle Memorial Institute: Thomas Grimme, Jessica Rittner
Bigler LP: Yuki Uchida
BiLOC LLC: Kyle Dy
BP: Joseph Lollini, Brittany Niles, Christopher Thurber
Cargill: Nariman Alkhatiib, Shlip Antani, Cory Johnston
Camp Dresser & McKee (CDM): Samantha Spano
Chemical Abstracts Service: Dylan Silbiger
Cornerstone Research Group: Melissa Grigger, John Larison, Mary-Margaret Williamson
Cummins Engine Co. Inc.: Chelsea Liao
Delta Airlines: Michael Birkmeyer
Diamond Innovations: Anand Ramanathan, Whitney Wutzler
DNV (formerly CC Technologies): Stephen Necamp
Dow Chemical: Adam Kowalski, Barrett Richter, Kevin Sutton, David Tarai
Emerson Climate Technologies: Wai-Meng Lei
Entrotech: William Brigode, Steven Ottobre, David Sesher, Emily Smith
Equity Engineering Group Inc.: David Lovano
ExxonMobil: Allison Payne, Steve Schwab
Genentech, Inc.: Stephen Rosegger
General Electric Corp.: Ryan Bradstreet, Robert Comer, Annemarie Fox, Anita Mallik, Jessica Tufts, Laurin Turowski
Glafelter: Adam Brandt, Caleb Kingsley, Trevor Morlan
Honda: Mark Foster, Trenton Mueller, Nathan Reed, Timothy Regan, Jeffrey Rentfrow
International Specialty Products (ISP): Jacob Bethel, Danielle Hartley

Kansas Life Sciences Innovation Center, Research Internship: Leslie Vanderkolk
Kennecott Consulting Corp: Brett Grygo, David Webster
Laird Technologies: Daniel Wisniewski
Lockheed Martin Corp.: Steven Adams
Marathon Petroleum, LLC: Alexander Ossey, Alexander Haas, Nicholas Koenig, Douglas Knapke, Crystal Martin, Steven Ottobre, Matt Tackett
NASA Undergraduate Student Research Program (USRP): Edward Dcruz
Nucor Steel: Justin Spitzer
Ohio State University, Research Internship: Michael Yingling
Omegadyne: Kelley Grum, Jeanne Durell
OMNOVA Solutions Inc.: Brian Kiel
Precision Energy and Technology (PET): Pradeep Kanakarajan
Procter & Gamble: Elise Ferguson, Katherine Kinstedt, Rebecca Murphy, Brittany Niles, Kelly Ramos, Evan Smith
RoviSys Co.: Danielle Jensen
Scotts Company: Adam Granitto, Thaddaus Huber, Sara Mihaioew, Greg Shoemaker, Jeanne Skebo, Alexander Vermejan
Tedia Co., Inc.: Michael Klimek
TKS Industrial Co.: Abdullahi Ali
Tsong Chen: Luke Barbara
University of Florida, Research Internship: Frederick Crawford
University of Washington, Research Internship: Christina Elias
Veyance Technologies Inc.: Jeffrey Rentfrow, Michael Turner
Whirlpool Corp.: William Murch
Worthington Industries: Matt Bierbower
Wright Patterson Air Force Base: Paul Gardner
2009 Placement Record for Undergraduates

Graduates of our program continue to have a strong placement record both within industry and within graduate and professional programs. The percentages provided here are based on senior exit surveys at the time of graduation.

Thirty-seven percent of our graduates will be going directly to industry with their B.S. degrees. About 20% of our students will be going on to graduate or professional school. Close to 17% of our students have accepted positions in Ohio and will stay in the state to pursue their post graduation plans. Students will be working at various corporations such as Exxon Mobil, the Dow Chemical Company, Procter and Gamble, and DuPont.

A number of our graduates received Latin Honors, With Distinction Honors or With Honors in Engineering. Latin honors are defined as follows: a cumulative grade point average (GPA) of 3.5 - 3.69 is Cum Laude; 3.70 - 3.89 is Magna Cum Laude; and 3.90 - 4.00 is Summa Cum Laude. Thirty-seven percent of our students graduated with some level of Latin Honors. A student who graduates “With Distinction” is an honors student (greater than a 3.4 GPA) who has completed a senior honors research thesis. A student who graduates “With Honors in Engineering” has completed a three-prong program consisting of completing a required number of honors courses, participation in community service, leadership and outreach as well participation in “investigational studies” which typically includes completing a research paper or thesis or completing a minor. Thirteen students graduated with Honors in Engineering and nine students graduated With Distinction in various disciplines.

Engineering Career Services (ECS) welcomes all employers to register, to recruit Ohio State engineering students and graduates. There is no cost to register and no fees for ECS services. If you, or someone you know, is interested in hiring Ohio State students for co-op experiences, internships or for full time placement, please contact Rosemary Hill, Director of Engineering Career Services at (614) 292-6651. You can read more about the services offered through ECS by visiting http://career.eng.ohio-state.edu.

2009 B.S. Graduates:

Autumn 2008 (December 2008)

Matthew Ehrman
Graduated Cum Laude, With Honors in Engineering;
Hired by Procter & Gamble, Ohio

Paul Gardner
Seeking Employment

Bryan Gebhart
Seeking Employment

Jeffrey MacLean
Seeking Employment

Laura Werner
Hired by Exxon Mobil, Texas

Spring 2009 (June 2009)

Edward Aprahamian
Hired by Capital One, Virginia

Joseph Braucher
Hired by Labs, Pennsylvania

Craig Buckley
Graduated Summa Cum Laude, With Distinction in Engineering, With Honors in Engineering; Pursuing Ph.D. in Chemical Engineering, Stanford University

Kyle Dy
Seeking Employment

Serra Elliott
Graduated Magna Cum Laude, With Distinction in Engineering; Pursuing Ph.D., University of California, Santa Barbara

Laura Fisher
Seeking Employment

Mark Foster
Seeking Employment

Jaykumar Grandhi
Further Education, not specified

Winter 2009 (March 2009)

Antonius Gondo
Returned to Homeland

Conor Hawkins
No information provided

Christopher Potts
Pursuing J.D., Seton Hall University

Zachary Smith
Seeking Employment

Carol Udoh
Graduated Cum Laude, With Honors in Engineering;
Hired by General Mills, Ohio

Edward Aprahamian
Hired by Capital One, Virginia

Joseph Braucher
Hired by Labs, Pennsylvania

Craig Buckley
Graduated Summa Cum Laude, With Distinction in Engineering, With Honors in Engineering; Pursuing Ph.D. in Chemical Engineering, Stanford University

Kyle Dy
Seeking Employment

Serra Elliott
Graduated Magna Cum Laude, With Distinction in Engineering; Pursuing Ph.D., University of California, Santa Barbara

Laura Fisher
Seeking Employment

Mark Foster
Seeking Employment

Jaykumar Grandhi
Further Education, not specified
John Groman Graduated Cum Laude; Hired by RoviSys Co., Ohio
Joseph Groszek Seeking Employment
Tad Grubbs Graduated Magna Cum Laude; Hired by Procter & Gamble, Ohio
Kimberly Hoang Graduated Summa Cum Laude, With Honors in Engineering; Pursuing Ph.D., The Ohio State University
Alexander Hodge Pursuing Ph.D. in Chemical Engineering, Auburn University
Jeffrey Hook Hired by James Hardie Building Products, California
Donna Jeffers Hired by Entrotech, California
Cory Johnston Hired by Cargill, Georgia
Brandon Jonas Graduated Cum Laude; Hired by Exxon Mobil, Texas
James Knight Graduated Magna Cum Laude, With Distinction in Engineering, With Honors in Engineering; Pursuing Ph.D. in Chemical Engineering, University of Texas, Austin
Jennifer Kovach Graduated Cum Laude; Hired by Accenture, Ohio
Arthur Lee Graduated Cum Laude; Hired by Owens-Illinois (O-I), Ohio
Samuel Lentz Graduated Magna Cum Laude, With Distinction in Engineering, With Honors in Engineering; Hired by Dow Corning Corp, Kentucky
Christopher Lewe Seeking Employment
Jonathan Lin Seeking Employment
Cathryn Marshall Graduated Magna Cum Laude; Pursuing Ph.D. in Chemical Engineering, University of Wisconsin
Crystal Martin Seeking Employment
Samantha Moormond Hired by Scotts Co., Ohio
Samuel Moore Hired Battelle Memorial Institute, Ohio
Zachary Murnane Hired by Camp, Dresser, and McKee, Florida
Halle Murray Seeking Employment
Joshua Nye Seeking Employment
Amanda Phoebe Seeking Employment
Anand Ramanathan Hired by Arcelor Mittal, Minnesota
Jordan Redman Seeking Employment
Shanon Rogers Seeking Employment
Eric Sacia Graduated Summa Cum Laude, With Distinction in Engineering, With Honors in Engineering; Pursuing Ph.D. in Chemical Engineering, University of California, Berkeley
Brian Setzler Graduated Cum Laude; Pursuing Ph.D. in Chemical Engineering, Georgia Tech University
Leslie Shumaker Graduated Magna Cum Laude; Hired by Procter & Gamble, Ohio
Jeanne Skebo Hired by Scotts Co., Ohio
Nicholas Smith Seeking Employment
Brittany Stechschulte Hired by Cargill, Ohio
John Titone Graduated Magna Cum Laude, With Distinction in Engineering, With Honors in Engineering; Hired by Bettis Atomic Power Laboratory
Andrew Vail Hired by Schlumberger, Arkansas
Kathleen Vermeersch Graduated Cum Laude, With Honors in Engineering
Pursuing M.S. in Chemical Engineering, Georgia Tech University
Yao Wang Seeking employment
David Webster Pursuing Ph.D. in Chemical Engineering, Auburn University
Steinn Welch Seeking employment
James Westerfield Seeking employment
Henry White Graduated Cum Laude; Pursuing M.D., not specified
Patrick Wilson Graduated Cum Laude; Hired by Battelle Memorial Institute, Ohio
Thomas Yeh Graduated Cum Laude, with Distinction in Engineering, with Honors in Engineering; Pursuing a Ph.D. in Chemical Engineering, University of Michigan
Abigail Brown Graduated Cum Laude, With Honors in Engineering; Hired by General Mills, Ohio
Thomas Czechowski Seeking Employment
Brett Grygo Hired by Sunoco, Inc., Ohio
Ahmed Hassan Seeking Employment
Mark Hilkert Further Education, not specified
Matthew Kanitz Seeking Employment
Jennifer Kirian Graduated Cum Laude; Pursuing M.B.A., Bowling Green State University
Michelle Koegler Graduated Magna Cum Laude; Seeking Employment
Daniel Lamone Pursuing M.S. in Chemical Engineering, The Ohio State University
Karl LaPointe Hired by Dow Corning Corp, Michigan

Summer 2009 (August 2009)
2009 B.S. Graduates Continued

John Meister Hired by Univenture, Ohio
Jeremy Mink Graduated Magna Cum Laude; Seeking Employment
Eric Neidig Seeking Employment
Alana Pevets Hired by Procter & Gamble, Ohio
Nathan Reed Seeking Employment
Katie Reinaker Graduated Cum Laude; Hired by Exxon Mobil, Texas
Ellis Robinson Graduated Magna Cum Laude, With Honors in Engineering; Pursuing Ph.D. in Chemical Engineering, Carnegie Mellon University
Dennis Stoltz Seeking Employment
Leeza Thompson Graduated Magna Cum Laude; Hired by Dow Chemical, Michigan
Man Tran Seeking Employment
Lindsay Volpenhein Graduated Magna Cum Laude, With Honors in Engineering; Hired by Dow Chemical, Texas
Blake Washington Hired by General Mills, Illinois
Jean Wheasler Graduated Summa Cum Laude, With Distinction in Engineering, With Honors in Engineering; Pursuing Ph.D. in Chemical Engineering, University of Wisconsin
Katherine Wilson Graduated Cum Laude; Hired by Exxon Mobil, Texas
Cameron Wohleber Hired by Owens-Illinois, Ohio

Autumn 2009 (December 2009)

Abdullahi Ali Pursuing M.S. in Chemical Engineering, The Ohio State University
Ryan Bradstreet Seeking Employment
Michael Heller Graduated Magna Cum Laude; Seeking Employment
Mohamed Keyse Seeking Employment
James Mekker Seeking Employment
Joseph Taris Seeking Employment

Undergraduate student, Aaron Nimrick, experiments with DNA extraction.
Undergraduate Enrollment
(number of students)

Year	Pre-Majors	Majors	Total
2006 | | | 200
2007 | | | 300
2008 | | | 400
2009 | | | 500
2010 | | | 600

Number of B.S. Degrees Per Year
Shows Total Students, Number Granted to Women and Number Granted to Ethnic Minorities

Year	Total Students	Women	Ethnic Min
2005 | 25 | 9 | 0
2006 | 29 | 6 | 10
2007 | 40 | 18 | 25
2008 | 67 | 34 | 23
2009 | 97 | 51 | 38

ChemE Total
Women
Ethnic Min

Tracking ChBE 200 Enrollment
ChBE 200 is the department's first major course. This table shows total enrollment in that course and the break down enrollment of women and ethnic minority students. Previous years include only students who passed the course with a C- or better.

Year	Total	Women	Ethnic Min
2006 | 21 | 9 | 6
2007 | 26 | 6 | 2
2008 | 34 | 16 | 0
2009 | 40 | 25 | 0
2010 | 40 | 18 | 0

Total Students
Women
Ethnic Min

Female and Ethnic Minority Trends in Total Department Enrollment

Year	Total Students	Women	Ethnic Min
2006 | 336 | 64 | 28
2007 | 474 | 112 | 38
2008 | 605 | 172 | 42
2009 | 665 | 351 | 52
2010 | 700 | 605 | 51
A total of 153 students were awarded undergraduate scholarships in the Chemical & Biomolecular program. The vast majority of those students were current majors, although a small amount went to recruit high ability first year students as well. A total of $109,600 was awarded to students heading into the 2009-2010 school year. This year the department awarded more scholarships but gave out less money than the previous year. This has resulted in a lower average award per student than in previous years. Huge increases in enrollment and variability in many endowments have caused these trends.

Trends in data from financial aid show that the number and amount of both student and parent loans have been increasing. Both Ohio State tuition and University financial support have increased yearly. However, since the increase in scholarship support hasn't been able to keep up with tuition increases, engineering students and their families have had to increase their debt levels to cover the additional costs. In the Chemical & Biomolecular Engineering Department, department scholarships from alumni and corporate donors help defray a small part of the loan burden for many of our students.

Department scholarships are determined mainly by merit, however, when a scholarship specifies that a student’s need be considered, both merit and need are taken into account. We thank those of our alumni who have established scholarship endowments for this purpose as well as our corporate donors who provide scholarships on an annual basis.

2009-2010 Undergraduate Scholarship Information

DOW Chemical Company-Dow Outstanding Junior Award
Chris Thurber

Allan I. Gordon Undergraduate Scholarship for Study in Biochemical Engineering
Christina Elias Emily Smith
Katherine Kolakowski Michael Yingling

Todd David Harris Memorial Scholarship
Benjamin Doup Stephen Necamp
Daniel Valco

The Howard R. Steele Memorial Scholarship in Chemical Engineering
Ashley Fortman John Logue
Ryan Gallagher Tiarah Tanyhill
Stephen Kinsley Laura VanVliet

Harry B. Warner Scholarship
Nicholas Koenig Alexander Vermejan

The Michael D. Winfield Scholarship
Elise Ferguson

Paul Bates Scholarship
Steven Adams Ibrahim Bamba
David Diaz-Rivera Justin Mason
Japheth Pritchett Darian Richardson
Alexander Sarmiento

Milton & Karen Hendricks Scholarship
Nathan Arroyo Beth Johnson
Brooke Laing Charles Lorence
Scott Shaheen

Smith E. Howland Scholarship
Yuki Uchida

Webster B. Kay Scholarship in Chemical Engineering
Robert Kappers Amanda Janasov
Robert Wensing

Lubrizol Foundation Scholarship
Beth Johnson Steven Ottobre

Aldrich Syverson Scholarship
Adam Granitto David Schnell
Tanner Williams Zhi Zheng

Fred H. Winterkamp Memorial Scholarship
Nicholas Cotton Alexander Haas
Daniel Morris Cory Noyes
Mark Politz Derek Reichel

H. Richard Unkel Chemical Engineering Class of 1941
Lukas Brooks Olivia Kindshuh
Sarah Koop Joshua Martin
Sara Vinson Amy Zuo

David H. George Chemical Engineering Scholarship
Roxanne Demarest Joseph Fahrenkamp
Natasia Haupt Anthony Kaiser
Gina Manacci Daniel Manning
Daniel Marrinan Aaron Nimrick
Amber Owens Terhi Reponen
Madeline Shirk Douglas Stauffler
Zachary Tangeman Shuyang Wang
Ling-Shun Wong

William R. & Doris M. Harris Scholarship in Chemical Engineering
Samuel Bayham Stephen Berling
William Brigode Robert Enouen
Annemarie Fox Vincent Frascello
Michael Hartman Thaddaus Huber
Richard McConnell Allison Payne
Jason Porter Kevin Sutton
Christopher Thurber Jessica Tufts

Harold W. Almen Scholarship
Dimitry Burdjalo Michael Frangiamore
Thomas Grimm Jean Johnson
Katherine Kinstedt Daniel Kromer
Rebecca Murphy Timothy Regan
Brian Setzler Mandy Still
Matt Tackett Robert Waters
The George S. Bonn Scholarship
Nariman Alkhatib Shilp Antani
Chris Bowles Fawn Bradshaw
Sean Hawkins Steven Hwang
Sean Kernan Jennifer Kirian
Chelsea Liao Steven Lim
Joseph Linsenmeyer Bradley Moore
William Murch Tri Nguyen
Daniel Savel Nahien Sharif
Yuhao Sun

The Samuel S. and Grace Hook Johnston Memorial Chemical Engineering Scholarship Fund
Jacquelyn Pittman Leslie Vanderkolk

J.R. Boothe Scholarship Fund
Robert Rudd

Dorothy J. & Herbert L. Fenburr Scholarship
Ryan Bradstreet Abigail Brown
Richard Ciccotti Anthony Constantino
Justin Goode Arman Haghigi
Robert Hoelzle Jacob Huggins
Douglas Knapke Michelle Koegler
David Lang Karl Lapointe
Wai Meng Lei Joseph Lollini
James Mekker Sara Mihaloew
Benjamin Pierson Justin Reed
Jessica Rittner Parth Shah
Justin Spitzer David Tarai
Lindsay Volpenhein Qi Wang
Katherine Wilson Whitney Wutzler
Sing Keat Chew Daniel Garrison
Michael Heller Matthew Isabel
Matthew Kusanke Andrew Kusanke
John Larison Brenna McNamee
Jeremy Mink Garrett Ringler
Evan Smith Laurin Turowski
Jean Wheasler

William H. Whirl Scholarship
Melissa Grigger

2009 Graduating Class
Graduate Program

Ranking

The 2010 U.S. News and World Report rankings of engineering graduate programs placed the Lowrie Department of Chemical and Biomolecular Engineering at #27. The College of Engineering was also ranked #27 in the nation. While the college rankings are based in good part on objective measures such as research funding, number of Ph.D. graduates, number of publications, etc., the departmental rankings are based on subjective surveys of deans of engineering and industrial executives. In 2010, we expect the National Research Council to publish a listing of departmental rankings that will be more quantitatively based. We have submitted our data for the NRC exercise and are guardedly optimistic that our department will receive a higher ranking from that analysis compared to the U.S. News survey. In any case, these findings in the table are good news for the Department.

Faculty Productivity

The following table, relating to faculty research and our PhD program, reinforces that our faculty are highly productive. Since 2005, we have averaged a graduation rate of 15.4 PhD students per year and a ratio of 0.94 Ph.D. degrees per faculty member. It is significant that in 2005 and 2006, we were fifth in the nation in the graduation of chemical engineering doctoral students. This is noteworthy as the leading departments in this category typically have many more faculty members than Ohio State.

<table>
<thead>
<tr>
<th>Ohio State College of Engineering</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace</td>
<td>20</td>
<td>19</td>
<td>21</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Biomedical</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chemical</td>
<td>32</td>
<td>32</td>
<td>26</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Civil</td>
<td>34</td>
<td>39</td>
<td>36</td>
<td>38</td>
<td>36</td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>21</td>
<td>21</td>
<td>23</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td>Electrical</td>
<td>24</td>
<td>19</td>
<td>26</td>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td>Environmental/Env. Health</td>
<td>nr</td>
<td>37</td>
<td>44</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>Industrial/Manufacturing</td>
<td>18</td>
<td>17</td>
<td>19</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>Materials</td>
<td>17</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Mechanical</td>
<td>23</td>
<td>20</td>
<td>21</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Nuclear</td>
<td>15</td>
<td>14</td>
<td>Nr</td>
<td>Nr</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Faculty</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Publications</td>
<td>76</td>
<td>73</td>
<td>89</td>
<td>78</td>
</tr>
<tr>
<td>Publications per Faculty</td>
<td>5.06</td>
<td>4.29</td>
<td>5.23</td>
<td>4.58</td>
</tr>
<tr>
<td>Books or Book Chapters</td>
<td>9</td>
<td>18</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Patents</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total Grad Students</td>
<td>83</td>
<td>77</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>Grad Students/Faculty</td>
<td>5.53</td>
<td>4.53</td>
<td>5.65</td>
<td>5.58</td>
</tr>
<tr>
<td>Ph.D. Degrees Granted</td>
<td>19</td>
<td>21</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Ph.D. Degrees/Faculty</td>
<td>1.27</td>
<td>1.24</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>Research Expenditures*</td>
<td>5,121,000</td>
<td>9,032,000</td>
<td>12,249,000</td>
<td>12,462,000</td>
</tr>
<tr>
<td>Research Exp/Faculty</td>
<td>341,400</td>
<td>531,290</td>
<td>720,530</td>
<td>733,060</td>
</tr>
</tbody>
</table>

(Data from the Ohio State University Foundation (fiscal year))
Graduate Degrees Granted

Winter Quarter 2009

Master of Science
Zhengzheng Fei
Hua Song
David Winkel, Jr (non-thesis)

Doctor of Philosophy
Wu Ge
Fangxing Li
Juan Sanz-Valero
Rustin Shenkman
Yuan Wen
An Zhang

Spring Quarter 2009

Master of Science
Megan Balog
Patrick Bennett
Claudia Berdugo
Elizabeth Daly
Ching-Suei Hsu
Xiaoxia Jin
Vikas Khanna
Ning Liu
Manish Talreja
Jia Peng Xu
Chaofang Yue

Doctor of Philosophy
Jeffrey Ellis
Hua Song
Yun Wu

Doctor of Philosophy
Advisor
Vikas Khanna
Lawrence Zimmerman
Zhengzheng Fei
Christopher Kagarise
Zhao Yu

Advisor
L. James Lee
Umit Ozkan
Barbara Wyslouzil

Autumn Quarter 2009

Master of Science
Advisor
Meimei Liu

Doctor of Philosophy
Advisor
Michael Boehm

Advisor
Wu Ge
Jacques Zakin
Shang-Tian Yang
Jeffrey Chalmers
Shang-Tian Yang
Shang-Tian Yang

Advisor
L. James Lee
Umit Ozkan
Yun Wu
Barbara Wyslouzil

Graduate Student Fellowships

University Fellowships
Uddyalok Banerjee
Niranjan Deshpande
Jorge Fontes
Daniel Knight
Erin Landers
Kalpesh Mahajan
Hrishikesh Munj

Distinguished University Fellowship
Yinming Du

Research Expenditures

For the past three years, our research expenditures (data from the Ohio State Research Foundation) have been outstanding, especially since they are based on the efforts of 17 faculty. On a per-capita basis, expenditures averaged over $700k per year during fiscal years 2007-2009. Our faculty are among the most productive at Ohio State and near the top of all Chemical Engineering departments in the nation.
Graduate Program Seminar Series

Winter 2009

01/22 **William J. Mitsch**, Professor of Environment and Natural Resources, Director, Wilma H. Schiermeier Olentangy River Wetland Research Park, The Ohio State University, “Ecological Engineering: Saving the Planet with a Sustainable Engineering”

02/05 **Michael Deem**, John W. Cox Professor of Bioengineering, Professor of Physics & Astronomy, Rice University, “Vaccine Design for Influenza and Dengue Fever”

02/12 **Glenn Lipscomb**, Professor and Chair, Chemical and Environmental Engineering, The University of Toledo, “Membrane Module Design”

02/19 **Gary Patterson**, Professor Emeritus, Chemical and Biological Engineering, Missouri University of Science and Technology, “Correlation for Yield of Competitive Reactions in Reactors with Turbulent Mixing”

02/26 **Subhas Sikdar**, Associate Director for Science, National Risk Management Research Laboratory, US Environmental Protection Agency, “Process or Product Sustainability and Applicable Metrics”

03/05 **Ying Liu**, Research Engineer, BP America, “Computational Fluid Dynamics: Modeling of Multiscale Chemical Reactors”

03/12 **John S. Olson**, Ralph and Dorothy Looney Professor, Department of Biochemistry and Cell Biology, Rice University, “Hemoglobin Gates and Tunnels: Different Ways to Capture O2 and Detoxify NO”

Spring 2009

02/05 **Doug Goetz**, Professor, Department of Chemical and Biomolecular Engineering, Ohio University, “Engineering Novel Vascular-Based Therapeutics and Diagnostics”

02/12 **Chien Ho**, Director, Pittsburgh NMR Center for Biomedical Research, Professor, Department of Biological Sciences, Carnegie Mellon University, “Tracking Immune Cell Migration In Vivo by MRI: A New Non-invasive Approach to Detect Graft Rejection After Transplantation”

02/16 **Ted Knowlton**, Technical Director, Particulate Solid Research, Inc., Chicago, IL, USA, “When Gas Bypassing Occurs in Deep Fluidized Beds of Geldart Group A Particles and How to Prevent It”

02/23 Safety Seminar

02/30 **Sankaran Sundaresan**, Professor, Department of Chemical Engineering, Princeton University, “Constitutive Modeling of Slow Flows of Dense Granular Assemblies”

03/05 **Gabor Somorjai**, Lowrie Lecture I - 11:30 a.m. Knowlton Hall, Room 250, 275 W. Woodruff Avenue, Professor, Department of Chemistry and Lawrence Berkeley National Laboratory, University of California, Berkeley, “Molecular Foundations of Catalytic Selectivity by Metals”

Summer 2009

07/20 **C. B. Mullins**, Professor, University of Texas at Austin, “Surface Chemistry of Model Catalysts”

08/28 **An Ping Zeng**, Institute of Bioprocess and Biosystems, Hamburg University of Technology, “From Systems Biology to Biosystems Engineering”

Autumn 2009

09/24 **Di Gao**, Assistant Professor and W. K. Whiteford Faculty Fellow, Department of Chemical and Petroleum Engineering, University of Pittsburgh, “Virtual Reality: Durable Superhydrophobic Coatings for Anti-icing and Drag Reduction”

10/08 **Chih Ming Ho**, Ben Rich – Lockheed Martin Professor, UCLA Distinguished Professor, Director of Center for Cell Control, Department of Mechanical and Aerospace Engineering, Henry Samueli School of Engineering and Applied Science, “From Materials, Devices, Systems to Control of Complex Systems”
Graduate Student Awards

Ashutosh Bhabhe: Won an NSF travel award to attend the 18th International Conference on Nucleation and Atmospheric Aerosols that will be held August 10 - 14th, 2009 in Prague, Czech Republic. He will be presenting the work he did together with Somnath Sinha and Hartawan Laksono on the condensation of Ar in supersonic nozzles.

Elizabeth Bidding: First Place in the Graduate Division of the Ohio Fuel Cell Symposium poster competition held May 27-28, 2009; North American Catalysis Society Kokes Travel Awards to attend the 21st NACS Conference in San Francisco to present her work; AIChe CRE Division Travel Award for travel to the 2009 Annual AIChe meeting in Nashville, TN; Ohio State University Council of Graduate Students Ray Travel Award to attend the AIChe National meeting in Nashville, TN; Ohio State Women in Engineering Distinguished Graduate Student Award; Department of Chemical and Biomolecular Engineering Dow Fellowship.

Hyun Kyu Choi: Best Poster Award at the 2009 IMR Materials Week.

Kelley Distel: Accepted to attend the 2009 National School on Neutron and X-ray Scattering. Kelley will spend one week in Oak Ridge National Laboratory learning about neutron scattering and doing sample experiments on the High Flux Isotope Reactor and/or Spallation Neutron Source. She will then go to the Advanced Photon Source at Argonne National Lab to learn about X-ray scattering and to do more sample experiments. The entire two week course including travel and accommodation is paid for.

Nandita Lakshminarayanan: North American Catalysis Society Kokes Travel Awards to attend the 21st NACS Conference in San Francisco to present her work.

Hartawan Laksono: Travel award from the American Association for Aerosol Research to attend the Annual Meeting in Minneapolis, MN October 26 – 30th.

Ning Liu: Won the Alumni Grants for Graduate Research and Scholarship from The Ohio State University Graduate School.

Shreyas Rao: Third Place in the Edward F. Hayes Graduate Research Forum Poster Presentation at The Ohio State University, April 2009.

Hua Song: North American Catalysis Society Kokes Travel Awards to attend the 21st NACS Conference in San Francisco to present her work.

Chi Yen: Winner of the 2009 Travel Award from the North American Membrane Society.
2009 Alumni Donors

1936 - Joseph G. Mravec
1939 - Ira Joseph Kail
1940 - Charles Boardman III
1941 - Thomas F. Lavery, David Thomas, Earl Godfrey Anderson
1942 - Donald S. Arnold, Randal E. Bailey
1943 - Halvor S. Christianson, Dalton F. Drake, James R. Randall, Roy E. Schneider, Carlyle E. Shoemaker, James C Wynd
1944 - Wallace L. Bostwick, Clarence A. Haverly, Jr., Edward W. Powell
1947 - William K. Fell, Thurman L. Graves, Lewis C. Hullinger, Herbert G. Krane, J. Bruce Martin, Bryce H. McMullen, Donald F. Stauffer
1949 - Paul E. Bates, Gordon G. Cross, J. Howard Kerstetter, Jr., Donald R. Roberts, Roland I. Spencer
1952 - James F. Froning, Donald E. Haupt, C. Richard Heil, Charles J. Schmitz
1953 - Robert A. Bates, G. Clyde Bazell, Roger L. Briggs, Donald E. Findlay, Wilfred C. Ling, Dr. Manoj Kumar D. Sanghvi, Harold L. Stelzer Jr., James Lloyd Wilson
1954 - Gilbert E. Raines
1955 - Wendell B. Hammond, Jr.,
1956 - Robert A. Cody, William David Coe, Herbert H. Fanning
1957 - Walter R. Andrews, Jr., Walter A. Flack, Jon D. Helms, Sung Ho Hong
1959 - Lee W. Addie, James O. Albery, Ronald M. Kovach, Darryl J. Von Lehmden, Gerald A. Wilcox
1961 - Paul R. Bigley, Richard B. Cooper, Ronald L. Follmer, Jack Arnold Hammond, Ronald D. Harris, John N. Rapach, Larry E. Woodworth
1962 - David E. Bidstrup, Kenneth J. Fulk, Richard L. Hoffman, Dean Snider, Michael J. Sorocek, Michael D. Winfield
1963 - Nelson W. Barnhill, Gary L. Beefer, Robert P. Kasper, Fred A. Shaftall, Kay Logan Snider
1964 - Michael B. Cutlip, William R. Ferris, Alan K. Kochsiek, James B. Sapp
1966 - William F. Deerhake, Thomas E. Fitz, Sr., William G. Lowrie, Glenn L. McKee
1968 - Dean Howell Reber, John M. Salladay
1970 - Bradford F. Dunn, David R. Grove, Charles A. Klingensmith, Richard B. Strait, Rosa Uy
1972 - John A. Thomas
1973 - John C. Bost, Thomas E. Claugus, David A. Dargan

1974 - Steven M. Brown, John E. Myers, George L. Ott, Michael A. Patterson

1975 - John T. Erikson, Stephen L. Grant

1976 - James M. Delabar

1979 - Kevin R. Cole, Darice Ann Davis, Karen T. Murphy, Randy W. Schumaker, David J. Wasela, Tad K. Williams

1980 - Frederick T. Clark, Matthew J. Galosi, Mark A. George, Gary R. Prok, Timothy L. Strickler, David G. Vutetakis

1981 - Nancy Coultrip Dawes, Ronald A. Gibson, William E. Naseman, James A. Telljohann

1982 - Dan Lambert, Andrew M. Weber

1983 - Michael Brian Begland, Tracy Flora Begland, Thomas D. Burns, Samuel D. Fink, Carolyn Marie Lin, Keith R. Nowak

1984 - Wendell E. Harkins, Gregory M. Masica, George W. Miller, Roger W. Nelson, Patrick A. Renner

1985 - Douglas J. Ball, Roger G. Facer, Rongher Jean, Timothy A. Johnson, David J. Moonay

1986 - Robert M. Canright, Michael L. Gilles, Rajeev L. Gorowara, Tharunai S Ramesh, Dave Vance, Brian A. Yanok

1987 - Jeffrey D. Adams, Karen S. Johnson, D. Brian Noe

1988 - Amy Schmidt Doty, Craig L. Shoemaker, Annette Brough Ventura

1989 - Stuart F. Doty, Amy Reynolds Pressly

1990 - Craig M. Kehres, James V. Lombardi, Timothy F. Matheis

1991 - Rick Wright

1992 - Scott D. Blatter, Samir Kumar, Frank E. Seipel

1993 - John Dee Clay, Christopher W. Voight

1994 - Beth Gibson, Jack R. Reese II, Leping Zhang

1995 - Nanette Lynn Nardi Triplett, Michael D. Triplett II

1996 - Aravind Rajappa Astagirip

1997 - James William Holder

1998 - Regis Paul Geisler III

2002 - Jun Luo, Nihar Arvind Patel

2004 - Angela N.D. Carlson, Jeffrey L. Ellis, Lori Ann Engelhardt, Erica Nicole Jones, Marisa A. LaPalomento

2005 - Michael G. Klidas

2008 - Jeffrey Ross Skinn

*Donations listed were received during the 2009 calendar year.
Faculty

Bhavik Bakshi

Books and Book Chapters

Baral, A., and B. R. Bakshi, "Comprehensive Study of Cellulosic Ethanol Using Hybrid Eco-LCA", in *Biofuel and Bioenergy from Biowastes and Residues*, ed. Khanal, S., American Society of Civil Engineers (ASCE), Reston, Virginia, 2009

Refereed Papers

Current Projects and Grants

- $70,881 Bakshi, Bhavik R. 2009-2010 Current Projects and Grants
 - $375,000 Bakshi, Bhavik R. 2006-2010 Evaluating the Impacts of Nanomanufacturing via Thermodynamic and Life Cycle Analysis, (co-PI: Prof. L. James Lee), Environmental Protection Agency
 - $12,000 Bakshi, Bhavik R. 2006-2010 Supplementary funds from NSF Research Experience for Undergraduate Program.
 - $300,000 Bakshi, Bhavik R. (co-PI William J. Mitsch) 2009-2011 Toward Integration of Industrial Ecology and Ecological Engineering, National Science Foundation

- $200,000 Fiksel, Joseph, Resilient Enterprise Consortium, Center for Resilience (co-PI: Bhavik R. Bakshi) 2009-2011 Toward Integration of Industrial Ecology and Ecological Engineering, National Science Foundation

Robert S. Brodkey

Jeffrey Chalmers
Professor, Ph.D., Cornell U., 1988. Bioengineering, Biochemical Engineering, Biomedical Engineering, mixing.

Books and Book Chapters

Refereed Papers

Refereed Papers

Balasubramanian, P., Yang, L., Lang, J.C., Jatana, K.R., Schuller, D., Agrawal, A., Zborowski, M., Chalmers, J.J.
“Confocal images of circulating tumor cells obtained using a methodology and technology that removes normal cells.”
Molecular Pharmaceutics 6(5):1402-1408, 2009. PMID: 19445481

Current Projects and Grants
$153,535 Jeffrey Chalmers 2008-2010
(P.I. of subcontract) Cell Selection by magnetic flow; NIH, subcontract from CCF

$22,540 Jeffrey Chalmers 2009-2011
(P.I. of subcontract) CCLI: Educational materials to enhance chemical engineering curricula with applications in biological engineering; NSF Div Undergraduate Education (Awarded to San Jose State University)

$65,593 Jeffrey Chalmers 2006-2010
(P.I. of subcontract) QMS technology to deplete t cell alloreactivity; NIH, (Awarded to U. of Indiana)

$50,000 Jeffrey Chalmers 2008-2009
Characterization of Millipore disposable bioreactor; Millipore Corporation

$3,500,000 Jeffrey Chalmers 2006-2010
Advanced biomedical devices for disease diagnosis and therapy; Ohio Department of Development

$2,350,349 Jeffrey Chalmers (Investigator) 2004-2009
OSU Comprehensive Cancer Center Support Grant; NCI

$xx,xxx,xxx Jeffrey Chalmers (Co-Investigator) 2008-2012
Center for affordable nanoengineering of polymer biomedical devices (CANPBD); NSF Div Engineering Education & Centers

$676,675 Jeffrey Chalmers (Senior Personnel) 2009-2010
ARRA CellTrap: A novel solid phase platform for analysis of stem/progenitor cells; National Institute of Aging

$313,433 Jeffrey Chalmers (Co P.I.) 2009-2012
Fluorescent-magnetic nanomanipulators for cytoskeletal mechanical investigations; National Science Foundation

$49,269 Jeffrey Chalmers 2009-2010
(P.I. of subcontract) ARRA Magnetophoretic Cell sorting and Analysis; NIH

Referred Papers

Current Projects and Grants
$46,375 Stuart L. Cooper 2009-2014
Center for Affordable Nanoengineering of Polymer Biomedical Devices, Sponsorship of 1 Ph.D. student, National Science Foundation (P.I. James Lee)

$1,086,000 S.L. Cooper, N. Moldivan (Co P.I.s) 2009-2011
“Cell Trap: A Novel Solid Phase Platform for Analysis of Stem/Progenitor Cells”, NIH

Liang-Shih Fan
Distinguished University Professor, Ph.D., West Virginia University 1978.Clean Coal Technologies, Multi-Phase Flow and Reaction Engineering.

Awards & Honors
Elected as a Foreign Member of Chinese Academy of Engineering (2009).
Best Paper Award in Fluidization and Fluid-Particle System presented at Particle Technology Forum AIChE (2009).
Charles Ellison MacQuigg Award for Outstanding Teaching, College of Engineering (2009).
Western Distinguished Engineering Lectureship, The University of Western Ontario (2009).

Current Projects and Grants
$153,535 Jeffrey Chalmers 2008-2010
(P.I. of subcontract) Cell Selection by magnetic flow; NIH, subcontract from CCF

$22,540 Jeffrey Chalmers 2009-2011
(P.I. of subcontract) CCLI: Educational materials to enhance chemical engineering curricula with applications in biological engineering; NSF Div Undergraduate Education (Awarded to San Jose State University)

Stuart Cooper
University Scholar Professor and Department Chair, Ph.D., Princeton University, 1967. Polymer Science and Engineering, Properties of Polyurethanes and Ionomers, Blood-Materials Interactions, Tissue Engineering.
Books and Book Chapters

Refereed Papers

Current Projects and Grants
$3,000,000 Fan, Liang-Shih 2009-2011
Coal Direct Chemical Looping Retrofit for Pulverized Coal-Fired Plants with In-situ CO2 Capture, Department Of Energy.

$300,000 Fan, Liang-Shih 2009-2011
Process/Equipment co-simulation on syngas chemical looping process, Department Of Energy.

$408,801 Fan, Liang-Shih, Rizzoni, Giorgio 2008-2010
Carbon negative chemical looping process for hydrogen or liquid fuel synthesis using refuse derived fuel, biomass and/or Ohio coal, Ohio Department of Development.

$159,996 Fan, Liang-Shih 2008-2010
Hydrogen production from syngas using novel metal oxide composite particles, Ohio Coal Development Office.

$81,222 Fan, Liang-Shih 2008-2009
Phase 1 SCL process - fabricated equipment, Ohio Coal Development Office.

$238,339 Fan, Liang-Shih 2008-2011
Development and implementation of 3-D, high speed capacitance tomography for imaging large-scale, cold-flow circulating fluidized bed, Department of Energy.

$100,000 Fan, Liang-Shih 2008-2009
Development of 3-D electrical capacitance volume tomography (3-D ECVT), Department of Energy.

$211,870 Fan, Liang-Shih, Zakin, Jacques. 2007-2009
Enhanced coal to liquid technology using calcium looping process, Ohio Coal Development Office.

$160,000 Fan, Liang-Shih 2007-2009
Integrated fuel cell with chemical looping, Ohio Coal Development Office.

$150,000 Fan, Liang-Shih 2007-2009
Carbon negative looping process impact on jet fuel characteristics, U.S. Air Force.

$1,564,206 Fan, Liang-Shih 2007-2010
High purity hydrogen production with in-situ carbon-dioxide and sulfur capture in a single stage reactor, Department of Energy.

$5,000,000 Fan, Liang-Shih 2009-2013
Pilot Demonstration of the Chemical Looping Systems ARPA-E/Department of Energy

Martin Feinberg
Morrow Professor, Ph.D., Princeton University, 1968, Complex Chemical Systems

Refereed Papers

Current Projects and Grants
$499,934 Feinberg, Martin 2004-2010
Quantitative Systems Biology: Understanding Bistability in Complex Enzyme-Driven Reaction Networks, National Science Foundation.

$381,826 Feinberg, Martin 2008-2013
Collaborative Research: Multistability in Biological Networks, National Institutes of Health - General Medical Sciences

W.S. Winston Ho

Awards & Honors
Elected a Fellow of the American Institute of Chemical Engineers (2009).
American Institute of Chemical Engineers’ Excellence and Appreciation Award (2009), Meeting Program Chair for the AIChE 2009 Annual Meeting, Nashville, TN, Nov. 8-13, 2009.

Books and Book Chapters

Refereed Papers

Current Projects and Grants
$150,000 Ho, W. S. Winston 2006-2010 National Science Foundation, Carbon Dioxide-Selective Membranes, OSURF Project No. 60008308.

$12,000 Ho, W. S. Winston 2008-2010 National Science Foundation, REU Supplement for Current Grant NSF CBET-0625758, Carbon Dioxide-Selective Membranes, OSURF Project No. 60017278.

$639,696 Ho, W. S. Winston 2008-2011 Office of Naval Research, Advanced Membranes for Reformate Hydrogen Sulfide Clean-up, OSURF Project No. 60014815.

$233,268 Ho, W. S. Winston 2004-2010 National Science Foundation, Center for Affordable Nanoengineering of Polymer Biomedical Devices, NSEC Project sponsoring 1 Ph.D. Student, with L. James Lee (PI), OSURF Project No. 60009015.

$205,558 Ho, W. S. Winston 2009-2011 National Science Foundation, Liquid Membranes in Nanopores with Strip Dispersion for Antibiotic Recovery, OSURF Project No. 60020609.

$12,000 Ho, W. S. Winston 2009-2010 National Science Foundation, Center for Affordable Nanoengineering of Polymer Biomedical Devices, NSEC Project sponsoring 1 Ph.D. Student, with L. James Lee (PI), OSURF Project No. 60009015.

Kurt Koelling
Professor, Ph.D., Princeton University 1993. Polymer Rheology and Processing, Polymer Nanocomposites, Multi-phase flows, Micro/Nanofluidics.

Refereed Papers

Koelling, Kurt, Lee, L.J., Yang, S.T. 2006-2009 STTR Phase II: Microfluidic cd biochips for enzyme-linked immunosorbent assays, National Science Foundation

$118,348

Koelling, Kurt 2008-2010 Properties of Carbon Nanotube Fibers and Bucky Papers, Battelle Memorial Institute

$131,179

Koelling, Kurt, Lee, L.J., Yang, S.T. 2006-2009 STTR Phase II: Microfluidic cd biochips for enzyme-linked immunosorbent assays, National Science Foundation

$118,348

Koelling, Kurt 2008-2010 Properties of Carbon Nanotube Fibers and Bucky Papers, Battelle Memorial Institute

$400,000 Tomasko, David, Koelling, Kurt, Kusaka, I., Lee, L.J. 2006-2009; Scalable Nanomanufacturing of High Performance Nanocomposite Foams, National Science Foundation.

$365,000 Koelling, Kurt, Lee, L.J., 2005-2009 Industry/University Cooperative Research Center (I/UCRC) for Advanced Polymer and Composite Engineering (CAPCE), National Science Foundation

$50,000 Koelling, Kurt, Vodovotz, Yael 2007-2009 Processing of Biopolymer Films, Institute for Materials Research

$39,800 Koelling, Kurt, Vodovotz, Yael 2008-2010 Biobased Polymer Films, I/UCRC Center for Advanced Packaging and Processing Studies

$50,000 Koelling, Kurt 2007-2010 Extensional flow induced orientation and rheology of polymer/carbon nanotube composites, Toray Industries

$100,000 Koelling, Kurt, Tomasko, David 2007-2009 Nanocomposite Foams, Nanomaterial Innovation Ltd.

Books and Book Chapters

Refereed Papers

Refereed Papers

Patents

Current Projects and Grants

$12,500,000 Lee, L. James (PI) 2009-2014

Nanoscale Science and Engineering Center for Affordable Nanoeengineering of Polymer Biomedical Devices- Phase II, National Science Foundation

$22,489,845 Lee, L. James (PI) 2005-2009

Center for Multifunctional Polymer Nanomaterials and Devices, Ohio Department of Development Third Frontier Program

$360,000 Lee, L. James (co-PI) 2006-2009

Evaluating the Impacts of Nanomanufacturing via Thermodynamic and Life Cycle Analysis, EPA

$8,000,000 Lee, L. James (PI) 2007-2010

Commercialization of High-Performance Nano-Tailored Structural Composites for Energy and Survivability Applications, Ohio Department of Development Third Frontier Program

$387,516 Lee, L. James (PI) 2007-2009

Novel Micro/Nanofluidic Electroporation Devices for DNA and Oligonucleotide Delivery, National Institute of Health (NIBIB)

$387,516 Lee, L. James (co-PI) 2007-2009

Novel Microfluidic Synthesis of Nanoparticles for Oligonucleotide Delivery, National Institute of Health (NCI)

$2,886,763 Lee, L. James (co-PI) 2008-2013

Targeted Lipopolypexes for Oligonucleotide Delivery to AML, National Institute of Health (NCI)

Patents

Current Projects and Grants

$1,875,000, 2006-2011, Mechanically stable blood substitutes (PI), Agency: National Institutes of Health
Grant: 1R01HL078840-01A1

$598,500, 2006-2009, Enhanced O2 delivery to C3A hepatocytes (PI), Agency: National Institutes of Health
Grant: 1R01DK070862-01A2

Michael Paulaitis

Professor, Ph.D., Illinois, 1976. Molecular simulations and modeling of weak protein-protein interactions; the role of hydration in biological organization and self-assembly phenomena; multiscale modeling of biological interactions; high-throughput cellular microarrays for characterizing protein-protein interactions in cell populations.

Current Projects and Grants

$143,000 Paulaitis, M.E., Schneck, J. P. 2007-2009 Profiling of Influenza-Specific Immune Responses in the Elderly, National Institutes of Health

James Rathman

Referred Papers

David Tomasko

Professor, Ph.D., Univ. of Illinois Urbana-Champaign, 1992. Molecular Thermodynamics, Supercritical Fluid Processing, Polymer Processing

Awards & Honors

Inducted as Honorary Member in Texnikoi, College of Engineering, The Ohio State University

Refereed Papers

Patents

Current Projects and Grants

$2,500,000 Tomasko, David (PI) 2008-2013 Ohio's Sustainable Science and Engineering Talent Expansion Program (OSTEP) – Bridges to Success, National Science Foundation, Co-PIs: S. Olesik, J. Ridgway, L. Mayer

$50,000 Tomasko, David (Co-PI) 2008-2009 Edheads interactive website to teach engineering design to middle school Girls Motorola Foundation Innovation Generation Grant, PI: S. G. Wheatley
$400,000 Tomasko, David (PI) 2006-2009
Scalable Nanomanufacturing of High Performance Polymer Foams, National Science Foundation, Co-PIs: I. Kusaka, L.J. Lee, K.W. Koelling

$1,982,000 Tomasko, David (Co-PI) 2004-2009
Track 2, GK-12, Optimization and Institutionalization of the Science Fellows Supporting Teachers (SFST) Program, National Science Foundation, Co-PIs: I. Kusaka, L.J. Lee, K.W. Koelling

$12,000,000 Tomasko, David (Co-PI) 2004-2009
Center for Affordable Nanoengineering of Polymeric Biomedical Devices, National Science Foundation, PI: L.J. Lee, Co-PIs: A.T. Conlisk, J.J. Chalmers, R. Lee

$100,000 Tomasko, David (PI) 2008-2010
Development of Melt Extrusion Processes for Pharmaceutical Applications Using Chemical Engineering Perspectives - Hoffmann-La Roche

$12,000,000 Tomasko, David (Co-PI) 2004-2009
Center for Affordable Nanoengineering of Polymeric Biomedical Devices, National Science Foundation, PI: L.J. Lee, Co-PIs: A.T. Conlisk, J.J. Chalmers, R. Lee

Jessica Winter
Assistant Professor, Ph.D., University of Texas at Austin, 2004. Nanobiotechnology, Tissue Engineering.

Awards & Honors
Elevated to Senior Member status of IEEE
Semi-finalist Innovator of the Year, Columbus Tech Innovation Awards

Refereed Papers

Current Projects and Grants
$300,000 Winter, Jessica O., Sarkar, Atom 2009-2012
Brain Mimetic Materials for Cancer Cell Migration Studies, National Science Foundation

$37,500 Winter, Jessica O., Sooryakumar, R. 2009-2010
Multifunctional Hybrid Nanomaterials: Synthesis, Manipulation and Device Arrays, National Science Foundation (OSU MRSEC, subaward)

$44,604 Winter, Jessica O. 2009-2011
Magnetic-Fluorescent Nanoparticles for Cellular and Molecular Separations, National Science Foundation (OSU NSEC, subaward)

David Wood
Associate Professor, Ph.D., RPI 2000. Biochemical Engineering, Bioseparations, Biosensing, Protein Engineering, Drug Discovery.
$275,000 Wood, David 2008-2010
Bacterial Biosensors for Endocrine Disrupting Compounds, National Institute of Environmental Health Sciences.

$273,404 Wood, David 2008-2011

$160,000 Wood, David 2008-2010
Commercialization of CA Enzyme (with Carbozyme, Inc.), New Jersey Commission on Science and Technology.

Barbara Wyslouzil
Professor, Ph.D., Caltech, 1992. Aerosol Science, Nucleation, Nanoparticle Growth and Structure, Biomedical Applications of Aerosols

Awards & Honors
College of Engineering, 2009 Lumley Research Award

Refereed Papers

Current Projects and Grants
Controlled drug delivery via solid lipid nanoparticles, National Science Foundation (OSU NSEC, subaward)

$90,000 **Wyslouzil, Barbara E.**, 2007-2010
Multicomponent droplet growth in supersonic natural gas separators, Petroleum Research Fund

$519,000 **Wyslouzil, Barbara E.**, 2005-2010
The formation rates and structure of nanodroplets, National Science Foundation

$450,000 **Wyslouzil, Barbara E.**, 2009-2012
Nanodroplet aerosols: Nucleation rates and structure, National Science Foundation

$45,479 **Wyslouzil, Barbara E.**, 2009-2010
Multifunctional nanoparticles: Formation and fundamental studies, National Science Foundation (OSU NSEC, subaward)

$399,961 **Bohrer, Gil, Zhao, LingYing, Wyslouzil, Barbara E.**, 2010-2012
Large eddy simulations of PM dispersion to quantify the effects of windbreaks on air quality around CAFOs, U.S. Department of Agriculture

Shang-Tian Yang
Professor, Ph.D., Purdue University, 1984. Bioprocess engineering, biochemical engineering, tissue engineering, metabolic engineering

Books and Book Chapters

Refereed Papers

Current Projects and Grants
$ 90,000 **Yang, Shang-Tian** 2006-2009
Production of Organic Acids and Esters from Plant Biomass by Extractive Fermentation and Enzymatic Esterification, The Consortium for Plant Biotechnology Research, Inc. (DOE)

$131,179 **Yang, Shang-Tian** 2007-2009
Microfluidic CD Biochips for Enzyme-Linked Immunosorbent Assays, National Science Foundation, STTR Phase II, BioLOC

$300,000 **Yang, Shang-Tian** 2007-2009
Production of butanol from sugar wastes in a fibrous bed bioreactor, EnerGenetics International, Inc.

$108,000 **Yang, Shang-Tian** 2007-2009
An Integrated Fermentation-Ultrafiltration Process for the Production of Xanthan Gum from Whey Lactose, Bioprocessing Innovative Company, Inc., USDA SBIR Phase II
$185,500 Yang, Shang-Tian 2008-2009
Metabolic engineering of C. tyrobutyricum and C. acetobutylicum for butanol and hydrogen production, Nagarjuna (India)

$1,000,000 Yang, Shang-Tian 2008-2010
Engineering Clostridia for economic production of biobutanol as a biofuel , Ohio Department of Development Third Frontier Advanced Energy Program

$215,144 Yang, Shang-Tian 2008-2010
Production of fumaric acid and ethanol from soybean meal, United Soybean Board

$ 65,550 Yang, Shang-Tian 2008-2009
Engineering clostritrial fermentation for biobutanol production, National Science Foundation, STTR Phase I, Bioprocessing Innovative Company, Inc.,

$110,000 Yang, Shang-Tian 2009-2010
Production of fumaric acid from sugars and starch by filamentous fungal fermentation, The Consortium for Plant Biotechnology Research, Inc. (DOE)

Jacques Zakin
Drag Reduction, Enhanced Heat Transfer, Rheology and Nanostructure Studies of Dilute Surfactant Solutions.

Refereed Papers

Current Projects and Grants
$136,852 Zakin, Jacques L. and S. Raghavan 2009-2010
