CBE Seminar: Kyle Vanderlick

Thomas E. Golden, Jr. Professor of Chemical & Environmental Engineering, Yale University

130 CBEC
130 CBEC
151 W Woodruff Ave
Columbus, OH 43210
United States

Retrofitting membranes: Wrapping up where nature left off



Of the many wonders of biological systems, one must certainly include cell membranes – one of the most elegant and versatile packaging materials known to mankind. With amazing material properties, these strong, deformable, semi-permeable, self-healing thin films are merely the thickness of two phospholipid molecules. While many, if not most, other biological wonders are far too complicated to imitate, basic membrane structures can be readily created in the laboratory – quite a testament to the power of molecular self-assembly. In fact, the relative ease of creating closed membrane structures, such as vesicles made from phospholipids and synthetic polymersomes made from diblock copolymers, offers amazing building materials for more advanced structures and superstructures. Such is the motivation for the work in our laboratory, which designs advanced membrane structures for new applications, and also as platforms for fundamental biological investigations. In this talk I will describe our progress in creating and using novel structures made of vesicles, polymersomes, hybrids of the two, and other building blocks such as lipid discs. Many of our structures are created by exploiting molecular interactions of biological molecules beyond nature’s design: for example, we use DNA as molecular glue for assembly purposes and we take advantage of phase separation of lipid mixtures to engineer anisotropic systems. Finally, we show how some of these man-made membrane structures can be transported by docking them to naturally motive cells.


Kyle Vanderlick is currently the Thomas E. Golden Jr. Professor of Engineering at Yale University. She received her B.S. (’81) and M.S. (’83) degrees in chemical engineering from Rensselaer Polytechnic Institute, and her Ph.D. (’88) from the University of Minnesota. After a one year NATO post-doctoral fellowship at the University of Mainz in Germany, she joined the faculty in chemical engineering at the University of Pennsylvania in 1989. In 1998 she joined Princeton University and became Chair of the Department of Chemical Engineering in 2004. In January 2008, Vanderlick took the helm as the Dean of Engineering at Yale University, a position she held until 2018.

Noted for her research in interfacial phenomena, Vanderlick received the Presidential Young Investigator Award (’89) as well as the prestigious David and Lucile Packard Fellowship (’91). She is also the recipient of numerous teaching awards including the highest such honors at both Penn (1993 Christian R. and Mary F. Lindback Award for Distinguished Teaching) and Princeton (2002 President’s Award for Distinguished Teaching). As the inaugural Dean of Yale’s newly reconstituted School of Engineering & Applied Science, she directed a variety of initiatives in both teaching and research to shape the School’s distinctive identity and its premier role in engineering education.





Category: Seminar